
Social Computing Homework 2: Link Prediction
CS5750/IS4700 Fall 2013 August 31, 2013

This project is due at 11:59:59pm on October 16, 2013 and is worth 5% of your grade. You must
complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

1 Description

In this assignment, we will be exploring different techniques for link prediction. Your job is to
write a program that, given a network, predictions the next few links that will be established. Your
program, called 5750linkpred will read input from a file given as a command-line argument,
open the file and read in the network, and then output the next links that it thinks will be formed.
There are very specific requirements for the format of the input and the output; these are included
below.

2 Requirements

Your program will accept two arguments: a filename and the number of links to predict. Your
program will read in the graph file in the format described below, and will output the predicted
links in the output described below. The instructors have a suite of test networks, and your pro-
gram’s output will be compared against the actual links that are created (i.e., the networks that
you are being tested on are real networks). The test script is same code that your project will be
graded with, so you should ensure that your program’s output is accepted by the test script in
order to achieve a good score.

2.1 Starter code

Very basic starter code and sample data for the assignment is available on the CCIS Linux network
at /course/cs5750f13/code/homework2. You are free to implement this project in any language
you choose (assuming the CCIS Linux machines have the necessary compiler and library support)
and to use any techniques that you choose. You may also use any existing graph libraries to store
and query the graph; you must not use these libraries to actually implement the prediction. All
prediction code must be written by you. If you have any questions about specific situations or
libraries, please contact the instructors.

To get started, you should copy down this directory into your own local directory (i.e., cp -r

/course/cs5750f13/code/homework2 ∼/cs5750). The Makefile is configured to test your code
on the reference input (via the test target). You should feel free to edit the Makefile so that
it will compile your code (or do other things). However, you should not change the test tar-
get. Your executable program must be named 5750linkpred, and must be executable by running
./5750linkpred.

2.2 Input format

Your 5750linkpred program will accept exactly two arguments: a filename and a number of links
to predict (in that order). The file will represent a graph, which will be a number of lines of the

1



form:

node1 [tab] node2 [\n]

The node1 and node2 labels can be of the form (in regular expression syntax):

[A-Za-z0-9-_]+

The graph files can be arbitrarily large, and the node labels can be of any length (greater than 0
characters). The graphs will be directed, meaning a link from A to B does not imply a link in the
reverse direction.

2.3 Requirements

Your programmust output the specified number of links that it predicts will be formed. It should
output the links it thinks are most likely first; the scoring function (described below) scores earlier
links better than later links. Your program’s output should printed to standard out, and should
be in the format

node1 [tab] node2 [\n]

using the same node labels that were given in the input file. In the output, the order of the nodes
matters (e.g., the link above represents a link from node1 to node2).

2.4 Scoring

Your program’s predicted links will be compared against the ground truth that was observed in
the network. Specifically, suppose that we asked your program to predict the next n links; we
call this list A = {a1,a2, ...an}. We would compare this to the list of the next 10× n links that were
actually formed (recall that link prediction is hard, so we are using a much larger list of ground
truth to compare against); we call this list T = {t1, t2, ...t10n}. For each of your predicted links ai ,
if ai ∈ T , you would be awarded 1

log i+1 points. Your total score is the sum of all of your points,

normalized by the highest possible score. Formally, your score is

∑
ai

1
log i+1 if ai ∈ T
∑

ai
1

log i+1

For example, suppose n = 5 and your program returned A = {a,b,c,d,e}. If b and e appeared in
T (i.e., b and e were among the next 50 links that were actually created), your score would be

1
log2+1 +

1
log5+1

∑
ai

1
log i+1

=
0.91023+0.55811

4.25372
= 0.34519

2.5 Extra credit

The three teams with the top overall scores on the grading tests will receive 10, 5, and 2 extra
credit points, respectively.

2



2.6 Error handling

If your program is unable to open the file, or if the file does not exist, you should output

Error: Unable to open graph file.

and exit. If you encounter a graph file which does not meet the specification listed above, you
should output

Error: Malformed graph file.

and exit. If you encounter any other error while running the program, you should output

Error: [meaningful description of the error]

3 Implementation hints

You should develop your client program on the CCIS Linux machines, as these have the necessary
compiler and library support. You are welcome to use your own Linux/OS X machines, but you
are responsible for getting your code working, and your codemustwork when graded on the CCIS
Linuxmachines. If you do not have a CCIS account, you should get one ASAP in order to complete
the project. If you are using C, your code must be -Wall clean on gcc. Do not ask the TA for help
on (or post to the forum) code that is not -Wall clean unless getting rid of the warning is what the
problem is in the first place.

You should be careful to avoid overfitting on the training data that we give you. Your program
will be graded on networks beyond just the ones that you are tested on; thus, any network-specific
rules would likely result in poor performance on the testing graphs.

4 Submitting your project

4.1 Registering your team

You and your partner should first register as a team by running the /course/cs5750f13/bin/register
script. You should pick out a team name (no spaces or non-alphanumeric characters, please) and
run

/course/cs5750f13/bin/register homework2 <teamname>

This will either report back success or will give you an error message. If you have trouble regis-
tering, please contact the course staff.

You must register your team by 11:59:59pm on September 30, 2013.

4.2 Final submission

For the final submission, you should submit you (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is

3



good, and an overview of how you tested your code. In your README, you should also point out
any extra features of your project that you have implemented.

You should submit your project by running the /course/cs5750f13/bin/turnin script. Specif-
ically, you should create a homework2 directory, and place all of your code and README files in
it. Then, run

/course/cs5750f13/bin/turnin homework2 <dir>

Where <dir> is the name of the directory with your submission. Again, the script will print out
every file that you are submitting, make sure that it prints out all of the files you wish to submit!

You must submit your project by 11:59:59pm on October 16, 2013.

5 Grading

The grading in this project will consist of

75% Program functionality

15% Performance

10% Style and documentation

6 Advice

A few pointers that you may find useful while working on this project:

• Check the Piazza forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

• Finally, get started early!

4


	Description
	Requirements
	Starter code
	Input format
	Requirements
	Scoring
	Extra credit
	Error handling

	Implementation hints
	Submitting your project
	Registering your team
	Final submission

	Grading
	Advice

