
Learning the Linux
Command Line

A beginners guide

First Edition

MARTIN PETRAUSKAS

Northeastern University
Khoury College of Computer and Information Sciences

2

3

How To Use This Guide

This guide is for anyone who wants to learn the Linux operating system and the Bash command line.
Throughout the guide, there are examples of how to use various bash commands. The chapters cover partic-
ular topics ranging from manipulating files and directories to connecting to remote servers.

Each chapter has basic definitions, examples, and a command summary that contains information about the
specific topic. Furthermore, in each chapter, commands are printed in bold, files, filepaths, and command
syntaxes are in this font, and examples that could be typed in the command line are in italics. The com-
mand summary at the end of each section contains a brief overview of the new commands introduced in that
chapter.

If there is trouble running the examples given in this guide, it could be one of the following issues. First,
a file might not be present. Some commands, such as filtering commands, require a particular file as input.
Second, the syntax for the command could be incorrect. Commands are sensitive and some require additional
arguments to run properly. Double check to ensure that all the necessary arguments are present and that
nothing is mistyped.

4

Acknowledgments

There are a great number of people who helped collaborate on this guide. I would first like to thank Professor
Christo Wilson for his support of the project. I came to Christo in mid-2018 with the idea of writing this
guide. He supported the project from the beginning and he assisted with formulating some of the examples
that are seen in the guide and making sure all the relevant information is covered.

I would also like to thank Samir Elhelw, Walter Geanacopoulos, Matthew Kline, and Garrett Tucker for
reviewing this guide. And lastly, I would like to thank my father, Bruno Petrauskas, for proofreading and
editing this guide from the very beginning.

Contents

1 The Virtual Machine 7

2 Creating a VM with VMWare Workstation 9

3 Creating a VM with VirtualBox 19

4 Basic Navigation of the Command Line 33

5 File Basics 43

6 File Manipulation 49

7 File Permissions 55

8 Manual Pages 61

9 Complex Inputs 65

10 Process Management 71

11 Filters and Regular Expressions 79

12 Input Output Redirection 87

13 Basic Networking 91

14 Command Cheat Sheet 95

5

6 CONTENTS

Chapter 1

The Virtual Machine

Learning to use the Linux operating system requires the proper software and a Linux distribution. The
examples in this guide use the Ubuntu operating system on a virtual machine (VM) which can be installed
on the VMWare Workstation Player or the Oracle VM VirtualBox virtualization software. Either program
will allow for the creation of a VM.

STEP 1: Acquire a Linux Operating System
Download the Ubuntu OS. The current version is Ubuntu 18.04.3 LTS, and it can be downloaded from
the official Ubuntu website: https://www.ubuntu.com/download/desktop. The download file is large,
approximately 1.8GB, so downloading the file can take some time.

STEP 2: Acquire the Virtual Machine Software
Download the necessary virtualization software to create a virtual machine with Ubuntu. The VMWare
Workstation Player can be downloaded from the VMWare website: https://www.vmware.com/

products/workstation-player.html. The Oracle VM VirtualBox can be downloaded from the
VirtualBox website: https://www.virtualbox.org/wiki/Downloads. Once the download is complete,
install the virtualization software on your computer before proceeding.

Chapter 2 covers the creation of a VM using VMWare and Chapter 3 cover the creation of a VM using
VirtualBox. Go through the steps of one of these chapters to create the VM that can be used to learn the
Linux operating system.

7

https://www.ubuntu.com/download/desktop
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://www.virtualbox.org/wiki/Downloads

8 CHAPTER 1. THE VIRTUAL MACHINE

Chapter 2

Creating a VM with VMWare Workstation

This chapter steps you through the process of creating a VM using the VMWare Workstation software.

STEP 3: Create a New Virtual Machine

Figure 2.1: Creating a New VM with VMWare

Start the VMWare Workstation program. On the home screen, locate the area marked “Create a New Virtual
Machine“ and click on it like in Figure 2.1

9

10 CHAPTER 2. CREATING A VM WITH VMWARE WORKSTATION

STEP 4: Selecting the Operating System

Figure 2.2: Selecting the Operating System

A pop-up will appear asking which how to install the operating system. Select the “Installer disc image file"
option as noted in Figure 2.2 and browse for the Ubuntu ISO file that was downloaded in Chapter 1.

STEP 5: User Credentials

11

Figure 2.3: Inputting User Credentials for Ubuntu OS

The next pop up, like in Figure 2.3 will ask for user credentials which will be used for the Ubuntu operating
system when it is created. Enter the username you would like to be used and a password as well.

STEP 6: Naming the Virtual Machine

Figure 2.4: Naming the Virtual Machine

12 CHAPTER 2. CREATING A VM WITH VMWARE WORKSTATION

As in Figure 2.4, give your VM a simple yet memorable name. Additionally, if you wish, the location of
where the VM is stored can be changed and it can be done at this step.

STEP 7: Selecting Virtual Disk Size

Figure 2.5: Selecting Disk Size

As in Figure 2.5, select the amount of space to be allocated to the virtual disk. For the examples in this book,
25GB is a good capacity.

STEP 8: Customize Hardware

13

Figure 2.6: Customizing the Hardware

As in Figure 2.6, navigate to the “Customize Hardware" button and click it. You will be brought to a pop-up
with more information.

STEP 9: Increase VM RAM

14 CHAPTER 2. CREATING A VM WITH VMWARE WORKSTATION

Figure 2.7: Increase the Amount of RAM

In the pop-up depicted in Figure 2.7, navigate to the “Memory" tab and increase the memory from 2048MB
to 4096MB. That should be more than enough to run the virtual machine and all the various programs this
semester.

STEP 10: Finishing the Setup

15

Figure 2.8: Finishing

Lastly, like in Figure 2.8, ensure the “Power on this virtual machine after create" is checked and then hit the
“Finish" button. Once the virtual machine is created, it will power up and go through the automated setup
process to configure the user account using the information provided in an earlier step.

STEP 11: Ubuntu Installation

16 CHAPTER 2. CREATING A VM WITH VMWARE WORKSTATION

Figure 2.9: Ubuntu Installation

As in Figure 2.9 Ubuntu will be setup automatically since the easy install option was selected earlier. This
process takes about 15-20 minutes.

STEP 12: Log Into the VM

17

Figure 2.10: Logging In

Log into the VM like in 2.10 and you now have Ubuntu fully installed to start learning the command line.

18 CHAPTER 2. CREATING A VM WITH VMWARE WORKSTATION

Chapter 3

Creating a VM with VirtualBox

This chapter steps you through the process of creating a VM using the VirtualBox software.

STEP 3: Create a New Virtual Machine

Figure 3.1: Creating a New VM

Start the VirtualBox program. In the upper left corner, click on the “New” button like in Figure 3.1.

STEP 4: Specify Virtual Machine Name and Type
Enter a simple name that describes the purpose of the virtual machine. Next, select “Linux” as the option for
the type of machine. Then, select the proper Ubuntu version (32-bit or 64-bit). Click “Next” after entering
the information.

STEP 5: Allocate RAM to the Virtual Machine
The Ubuntu OS recommends at least 2GB of RAM. Allocating anywhere between 4GB and 8GB is enough
to use Ubuntu and learn how to use the command line. Then click “Next”.

19

20 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

Figure 3.2: Name and Type of VM

STEP 6: Create the Virtual Hard Disk

Select the option “Create a virtual hard disk now”, and then click “Create”.

Figure 3.4: Creating a New Virtual Hard Disk

On the next screen, select the VirtualBox Disk Image (VDI) as the hard disk file type, and then click “Next”.

21

Figure 3.3: Allocating RAM

Figure 3.5: Select Hard Disk Type

Select the “Fixed size” option, and click “Next”.

22 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

Figure 3.6: Hard Disk Storage Type

Allocate between 10GB and 25GB for the hard drive size, and then click “Create”.

Figure 3.7: Hard Disk Size

Another screen shows the progress of the creation of the hard drive.

Figure 3.8: Progress

23

STEP 7: Configure Virtual Machine Settings
Before installing Ubuntu, some settings must be changed for the virtual machine to function properly.

To access the settings of the newly-created virtual machine, either click on the “Settings” button in the top
left corner, or right click on the machine and click on “Settings”.

Figure 3.9: Virtual Machine Settings

24 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

The RAM, number of processors, and other options can be changed from the general settings panel.

Figure 3.10: General Settings

Select “System” on the menu, and then go to the “Processor” tab. Select the option “Enable PAE/NX”.

Figure 3.11: Enable PAE/NX

Note: this feature may need to be enabled or disabled for the virtual machine.

25

Select “Display” on the menu. Under the “Screen” tab, select “Enable 3D Acceleration”.

Figure 3.12: 3D Acceleration

Note: this feature may need to be enabled or disabled for the virtual machine.

Select “Storage” and click on “Empty” under “Controller: IDE”.Then click on the small image of a CD next
to “Optical Drive”. A pop up screen will appear to select the Ubuntu ISO file. And then click “OK”.

Figure 3.13: Mount the ISO Image

26 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

STEP 8: Install Ubuntu on the Virtual Machine
Select the virtual machine that was just created and click “Start”. Either click on the Start button in the upper
left corner or right click on the virtual machine and then select the Start option.

Figure 3.14: Start the VM

27

Once the machine is started, select “Install Ubuntu” on the screen that appears.

Figure 3.15: Install Ubuntu

28 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

On the next screen, select the keyboard layout that the Ubuntu OS will use. Then click “Continue”.

Figure 3.16: Choose a Keyboard Layout

29

Now select “Normal Installation” to install all the Ubuntu programs, And then select “Download updates
while installing Ubuntu”. Then click “Continue”.

Figure 3.17: Normal Installation

Note: also select the “Install third-party software” if the wifi card or other hardware is incompatible with the
virtual machine.

30 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

On the installation type screen, select “Erase disk and install Ubuntu” and click on “Install Now”.

Figure 3.18: Erase Disk

A pop-up appears to confirm the changes. Then click on “Continue”.

Figure 3.19: Continue with Changes

31

Type in the city to establish the proper timezone. Then click on “Continue”.

Figure 3.20: Select Proper Timezone

32 CHAPTER 3. CREATING A VM WITH VIRTUALBOX

Enter the required information in every field. Then, click on “Continue”.

Figure 3.21: Enter User Credentials

Figure 3.22: Installation is Now Complete

After the installation is completed, click on “Restart Now” to use the virtual machine.

Chapter 4

Basic Navigation of the Command Line

Definitions

1. Root Directory – the top-most directory in a file system structure

2. Home Directory – the file system directory for a given user on an operating system

3. Current working directory – the directory in which the user is currently in

4. Absolute path – the path of a file from the root directory

5. Relative path – the path of a file from the current working directory

6. File system structure – the organization of the files and directories of a computer

The Basic Navigation of the Command Line

There are many similarities between the file structure of a Windows/Mac OS and the Linux OS. However,
some differences, such as the name of the home and root directories, should be noted.

On the Windows OS, the home directory is C:\Users\<USERNAME>. This is where user information is
stored, such as documents, pictures, etc.. C:\ is the root directory of the entire computer. It is where the
information for the computer is stored in different folders such as program files, operating system files, and
other files.

Other devices connected to the computer have different corresponding root directories starting with another
letter. Look at the following example of drive letter assignment on a computer.

33

34 CHAPTER 4. BASIC NAVIGATION OF THE COMMAND LINE

Figure 4.1: Windows Root Directories

C: is the root for the local disk, which is the computer, while E: is a SD card and F: is an external hard drive.
Windows assigns the next free letter to the appropriate device. A file in the external hard drive might have
the filepath of F:\projects\examples1.doc.

On a Linux-based operating system, the home directory is /home/<USERNAME>. Like the Windows OS, that
is where all the user information is stored. However, one of the main differences is that the root directory for
a Linux machine is /, which is a simple forward slash.

The location of other devices in a Linux computer will be explained in the end of this section.

Directory Structure

Figure 4.2: Windows Directory Structure

The above is an example of the directory structure on a Windows computer. The file system is hierarchical
and it looks just like a tree. For a Linux machine it would have the same hierarchical structure with different
directory names.

To navigate the directories of any operating system, it is necessary to have a basic understanding of the file
system structure.

35

Absolute Paths vs. Relative Paths

An absolute filepath is the path for a file from the root directory, which in the diagram on p.22 is C:\ which
is at the very top of the tree-like structure. For example, the absolute filepath for the file nice.jpg, which is
circled in red in the above diagram, would be C:\Users\Student login\Desktop\nice.jpg.

A relative filepath is the path for a file from your current working directory, which, in the diagram on p.22, is
the admin folder boxed in green. For example, the relative filepath to the file nice.jpg would be ..\Student
login\Desktop\nice.jpg. Look closely at how the filepath starts. It starts with a two periods. This
signifies going up one level in the directory structure from the admin directory to the Users directory.

Using the Terminal

Now that you know the basics of directories and filepaths, it is now time to start using the terminal.

To start up the terminal, right-click anywhere on the screen to display the below menu. One of the options
is “Open Terminal”.

Figure 4.3: Starting the Terminal

Selecting “Open Terminal” displays the below terminal, and from there you can start to use the command
line.

36 CHAPTER 4. BASIC NAVIGATION OF THE COMMAND LINE

Figure 4.4: The Terminal

Entering Commands on the Terminal

Within the terminal, you have something called a shell. The shell is a command-line interface that interprets
commands, defines how the terminal behaves, and how it looks after executing commands. On most Linux
distributions, including Ubuntu, Bash is the default shell. Bash stands for Bourne-Again shell. Whenever
you start a terminal, its location is always your home directory.

The terminal displays the following when it first starts up:

1. learninglinux: the username of the current user

2. learninglinux-VirtualBox: the name of your virtual computer

3. ∼: the current user’s home directory, which in this case is /home/learninglinux

4. $: prompt symbol, your input appears after this symbol

The pwd command stands for print working directory. The syntax for the command is as follows: pwd

[OPTIONS]. Without any arguments, this command prints the absolute file path of the directory that you are
currently in. Type pwd in your terminal to see the result. It should look similar to the following, but instead
of learninglinux, it will display your username.

37

Figure 4.5: pwd Command

Note: There are optional arguments for the pwd command, but you do not need to know them right now

To move to other directories, use the cd command, which stands for change directory. The syntax is cd
[DIR]. DIR is an optional argument for the location of the directory you want to move to. If no argument is
supplied, the cd command automatically goes back to the home directory.

To use the cd command to move around, use either the absolute path or the relative path of the directory.
There is a directory named learning Linux within my Documents directory. To change to this directory using
the absolute path, type the command cd /home/learninglinux/Documents/learninglinux.

Figure 4.6: cd with Absolute Path

Another example is to go into the scripts directory, which is within the learninglinux directory. To do this,
run the command cd home/learninglinux/Documents/learninglinux/scripts.

Figure 4.7: cd with Absolute Path

In both of these examples, the shell shows your current working directory, which starts off with
/Documents/learninglinux. The ∼ symbol shows up again and it has the same meaning as we men-
tioned before. It is a shortcut for the home directory. Now type in cd ∼. This will change the directory back
to the home directory.

38 CHAPTER 4. BASIC NAVIGATION OF THE COMMAND LINE

Figure 4.8: cd Home Directory

39

Viewing Directory Contents

To know what is in the directories use the ls command, which stands for list segments. The syntax for this
command is ls [OPTIONS] [FILE]. By default, the command with no arguments will list all visible files
and directories that are in the current directory. In later sections we will learn some of the other optional
arguments. Enter ls in your terminal.

Figure 4.9: ls Command

As you can see above the different files and directories are color coded. The following table describes the
color and their associated file type.

Color File Type
White Text Files
Blue Directories
Green Executables
Pink Images
Red Archives
Cyan Links

Note: These colors may differ with different versions of the shell.

The ls command has numerous optional arguments that can be passed along with the command. Two of
the most common arguments with the ls command are a and l. a will show all the contents of a directory,
including hidden files and l will list more information about each item in the directory. Try both of these
commands in the terminal.

40 CHAPTER 4. BASIC NAVIGATION OF THE COMMAND LINE

Figure 4.10: Listing Hidden Files

Look closely at the left most column of the output of ls -a. The first two items displayed are a “.” and “..”.
These are very important in the file system structure. Both of these will always be present in a directory, no
matter which one it is. The single period represents the current directory you are in, and the double period
represents the parent directory.

To move around from one directory to another using relative paths, enter the name of the directory relative
to the current working directory. For example, to go from the home directory to the Documents directory,
type the command cd Documents.

Figure 4.11: cd Relative Path

You can also move several directories down at a time. Within the Documents directory, there is a directory
named learninglinux, and within that directory, there is one called scripts. To get to that directory in
one command, type in the command cd Documents/learninglinux/scripts.

Figure 4.12: cd Relative Path 2

41

Note: You may run into some issues with directory names if they contain spaces or other special characters.
These types of issues will be discussed in a Chapter 7 Complex Inputs

So far, all the commands have been going down into directories. But there are ways to go back up in the
file system structure. Right now, the current working directory is Documents/learninglinux/scripts.
To get to the Documents/learninglinux directory, type in the command cd .. The two periods after cd
signifies the parent directory, which is up one level in the directory structure.

Figure 4.13: cd Parent Directory

Linux Devices

Other devices on Linux are stored in the media directory. Use the command cd /media/<USERNAME> to
navigate to the directory that may contain other devices. This is yet another example of using the absolute
path with the cd command.

Figure 4.14: Media Directory

This directory contains the other devices that are connected to the Linux machine at the moment. There are
two: the first one is an SD card, and the second is a flash drive. To see the contents of these drives, change
into the appropriate directory using the cd command.

42 CHAPTER 4. BASIC NAVIGATION OF THE COMMAND LINE

Command Summary

Command Purpose
pwd print name of current/working directory

cd or cd ∼ change the working directory to the home directory
cd [DIR] change the working directory to DIR
cd .. change the working directory to the parent directory
ls list directory contents

ls -a list directory contents including hidden files
ls -l list directory contents with details

Chapter 5

File Basics

Definitions

1. File – a computer resource for recording data that is accessible by the operating system, programs, and
the user

2. Character Encoding – a mapping of characters to bytes so that a computer can interpret characters
properly

3. Bit – the smallest unit of data that can be represented on a computer

4. Byte – unit of data comprised of eight bits

This section covers what a file is, what character encoding is, and how to create files from the command line.

Files

A file is simply a sequence of bytes written on a computer storage device, such as a hard drive, flash drive
or other device, that is accessible by the operating system, different programs, and the user. In essence, files
are an abstraction for organizing groups of bytes that go together. For example, a Word document might
contain text, a table, a couple charts, and some meta-data about how to format all of the before-mentioned
content. All of these bytes are stored together in a single file since we consider them all to be part of the
same document.

Text and Binary Files

There is a distinction to be made between text files and binary files. Text files contain human readable text
while binary files contain data that cannot be interpreted by a human, and only by a computer program.

43

44 CHAPTER 5. FILE BASICS

The result of running the ls command in the files directory is two files. One regular text file, and binary
file.

Figure 5.1: ls Command

To see the information in the file, use the cat command, which stands for concatenation. The syntax for this
command is cat [OPTION] [FILE]. The result of running the cat report.txt on the regular text file is the
following.

Figure 5.2: cat Command

As you can see, it is definitely human readable text.

Now, if we run cat ssort, we will not see any human readable text.

45

Figure 5.3: cat Command 2

Other than the occasional character that can be interpreted, the output of the binary is unreadable.

Character Encoding

Computers can only interpret bits, which store binary values of 0 or 1. This means that they cannot interpret
characters like ’a’, ’4’, or ’%’. These characters are stored in the computer as one or more bytes. As a result,
a character encoding maps computer bytes and the characters a person sees on the screen.

ASCII - American Standard Code for Information Interchange

ASCII is the oldest standard for character encoding. All ASCII characters are encoded using one byte of
information (8 bits). However, this limits the number of characters that can be encoded to 28, which is 256
characters, such as the English alphabet, roman numerals, and some special characters.

The following is a table of characters encoded with ASCII:

Decimal Binary Character
0 00000000 NULL
42 00101010 *
77 001001101 M
13 00001101 CR (carriage return)
7 00000111 BELL

And the following is an example of a file encoded in ASCII.

46 CHAPTER 5. FILE BASICS

Figure 5.4: ASCII Encoded File

UTF - Unicode Transformation Format

ASCII was a good start for encoding characters, but what about all the other characters that are found in
different languages? Those could not be represented with the number of characters that ASCII is limited to.

In 1987, people from Xerox and Apple set out to make a universal character set that would include characters
from all the different languages of the world. The major character encodings in UTF are UTF-8, UTF-16,
and UTF-32.

UTF-8 is the most common encoding and uses four bytes to encode a character. It was designed to be
backwards compatible with ASCII. This means that the first byte of information in UTF-8 has the same
character mappings as ASCII.

Because of this backwards compatibility, whenever you are coding or typing a file, it will default to an ASCII
text file, but as soon as it encounters a non-ASCII character, the file will then be encoded in UTF-8.

Here is an example of a file encoded in UTF-8.

Figure 5.5: UTF-8 Encoded File

Line Endings

Any machine that runs DOS/Windows uses different line endings than a machine that runs Unix. On Win-
dows machines line endings are “\r\n”, which is the carriage return followed by a newline. However, in Unix
the line endings in just the newline represented by “\n”.

There is a command that can be used to convert the file endings fromDos style to Unix style and this program
is called dos2unix. The syntax for this command is dos2unix FILE, which would convert all the line
endings in the FILE to the proper Unix-style line endings.

47

File Extensions

File extensions are the endings attached to the names of files, such as exe (executable), jpg (picture), doc (doc-
ument) and many others. These extensions signal to the operating system how the files should be interpreted
and how the bytes of information are arranged.

Operating systems rely on file extensions to find the proper program to open a file. It would be bad if
Notepad++ tried to open a mp3 file. This is very common in graphical interfaces when a user can double
click on a file, and the corresponding program will open the file.

However, command lines do not care about file extensions, and for the most part, they will not associate a file
with any type of program. There is a small exception on Windows OS where the command line will assume
a file is executable if it has the extensions exe. This issue does not arise in Linux because file permissions
denote if a file is executable. File permissions will be explained in Chapter 5.

Creating a New File

To create a file from the command line, there are several commands that can be used.

If youwant to create an empty file, use the touch command. The syntax for the command is touch [OPTION]

[FILE]. Go to the terminal and type touch myfile.txt.

Figure 5.6: touch Command

This creates a text file called myfile.txt in your current directory. To check that the file is there, enter the
ls command.

Figure 5.7: touch Command 2

48 CHAPTER 5. FILE BASICS

Another way to create a new file is to use a command line text editor such as vim or emacs. The synatx for
these commands are vim [FILE] or emacs [FILE] and these a text editor will open up on the command
line so that content can be added.

Command Summary

Command Purpose
touch [FILENAME] creates an empty file named FILENAME
cat [FILENAME] displays the contents of FILENAME

vim [FILE] opens the FILE with the vim text editor
emacs [FILE] opens the FILE with the emacs text editors

dos2unix [FILE] converts the FILE to Unix-style line endings

Chapter 6

File Manipulation

In this section, you will learn about files names, creating, moving, copying, and deleting directories and files.

File Names In Linux

File names in Linux are case sensitive. That means the name of the file is specific to the uppercase and
lowercase characters. For example, if a file is named myfile.txt, and we try to open a file named
MYFILE.txt, an error message will appear. These are two distinct files.

To determine a file type, use the command file. The syntax for this command is file [FILENAME]. At the
terminal, type in file myfile.txt.

Figure 6.1: file Command

The output is the name of the file, which is myfile.txt, followed by the type of file, which is a basic text
file encoded in ASCII.

Try the command file MYFILE.txt and an error message appears that the file does not exist.

49

50 CHAPTER 6. FILE MANIPULATION

Figure 6.2: file Command Error

In the Windows and Mac OS, myfile.txt and MYFILE.txt would refer to the same file. If you have a file
named myfile.txt and you try to create a file named MYFILE.txt, you will see the following error message
in Windows.

Figure 6.3: Windows File Error

These operating systems regard the files as the same even though their case is different. In the following
figure, you can see that I created a file named MYFILE.txt and Linux does not display an error message.
Looking at the directory contents, you can see two distinct files.

Figure 6.4: touch Command

Creating Directories

Tomake directories from the command line, use the commandmkdir, which is shorthand for make directory.
The syntax for the command is mkdir [OPTIONS] DIRECTORY. At the terminal, type inmkdir examples. This
will create a directory named examples.

51

Figure 6.5: mkdir Command

Copying Files and Directories

To copy files and directories, use the cp command, which is shorthand for copy. The syntax for the command
is cp [OPTIONS] SOURCE DEST, where SOURCE is the file or directory you want to copy and DEST is the
destination The command to copy myfile.txt from the current directory to the newly created examples
directory is cp myfile.txt examples.

Figure 6.6: cp File

Additionally, an entire directory can be copied instead of one file. The command to copy the scripts directory
into the examples directory is cp -r scripts examples. In this case, the optional argument r is required to
recursively copies all the contents of the scripts directory into the examples directory.

Figure 6.7: cp Directory

Deleting Files and Directories

To remove files or directories, use the rm command, which is shorthand for remove. The syntax for the
command is rm [OPTIONS] [FILE].

52 CHAPTER 6. FILE MANIPULATION

Navigate to the directory where you want to remove a file. Run the command rm myfile.txt. This will delete
the file named myfile.txt.

Figure 6.8: rm File

You can also use the rm command to delete an entire directory. To delete the directory scripts, go to the
directory which contains scripts and run the command rm -r scripts. The r is an additional argument that
removes directory contents recursively.

Figure 6.9: rm Directory

Note: Remember to include the r argument when making changes to entire directories. An error message
will be shown if this argument is not included.

Moving Files and Directories

To move files and directories, use the command mv, which is shorthand for move. The syntax for this
command is mv [OPTION] SOURCE DIRECTORY, where SOURCE is the file or directory to be moved, and
DIRECORY is the destination of the source. To move MYFILE.txt from the current directory to the examples
directory, use the command mv MYFILE.txt examples.

Figure 6.10: mv File

53

The mv command can also be used to move entire directories. To move the scripts directory out of the
examples directory up one level, use the command mv scripts ..

Note: The two periods mean you are going up one level in the directory structure

Figure 6.11: mv Directory

Renaming Files

The mv command can also be used to rename files. In the scripts directory, there is a file named
example1.py. To rename the file, type in the command mv example1.py python-example.py. This will
rename the file example1.py to python-example.py.

Figure 6.12: mv Rename

Command Summary

Command Purpose
file [FILENAME] Determines the file type of FILENAME

mkdir [DIRECTORY] Make the directory DIRECTORY
cp [SOURCE] [DEST] Copy the SOURCE TO DEST
cp -r [SOURCE] [DEST] Copy the SOURCE directory recursively to the DEST

rm [FILENAME] Remove or delete FILENAME
rm -r [DIRECTORY] Remove or delete DIRECTORY recrusively

mv [SOURCE] [DIRECTORY] Move the SOURCE file or directory to DIRECTORY
mv [SOURCE] [DEST] Rename the SOURCE file or directory to DEST

54 CHAPTER 6. FILE MANIPULATION

Chapter 7

File Permissions

Definitions

1. File Permissions - rights to access given files for specific users or groups

2. Octal - numeral system in base 8 comprised of the numbers 0 to 7

With the basic knowledge about files and how to manipulate them, the next step is to learn about file permis-
sions. Every file has certain permissions that dictate which users can interact with the file and what type of
interactions they can have.

Type of File Permissions

Files are assigned any three of the following permissions:

1. Read: allows a user to view the contents of a given file

2. Write: allows a user to modify the contents of a given file

3. eXecute: allows a user to run or execute a given file as a script or program

Every file has a combination of the three permissions. For example, let’s say we create the file myfile.txt,
this file could have read and write permissions, denoted by rw-. This means a user can read and write to
the file, but cannot execute it. Another file named script.sh can have read-write-execute access, which is
denoted by rwx. This means a user can read, write-to, and execute the file.

With the Linux operating system, files have Unix-style permissions. This means that file permissions are
based on three categories:

1. Owner/user (u): the user who created/owns the file

2. Group (g): a specific group of users

55

56 CHAPTER 7. FILE PERMISSIONS

3. Other (o): all other users

Note: The character in parentheses will be important later on when assigning permissions to specific cate-
gories

Reading File Permissions

Navigate to a directory that contains files. To view the permissions of the files in a directory, use the ls
command with the additional argument l. This argument displays the contents of the directory in long list
format.. At the terminal, enter the command ls -l.

Figure 7.1: Reading File Permissions

The very first line of the output is “total 4”. This is not relevant to file permissions, but it represents the total
number of file system blocks all the files take up in this directory.

The next line contains information regarding myfile.txt.

1. -rw-r–r–: file permissions for myfile.txt

2. learninglinux: owner of the file

3. learninglinux (the second one): group

4. 48: size of the file in bytes

5. Aug 14 09:57: date that the file was either created either or last modified

6. myfile.txt: name of the file

The file permissions have four distinct parts:

1. -: The first part is either a simple dash or the character d. The dash represents that it is a file, while a
d represents a directory.

2. rw-: The next three characters are for the owner/user of the file. The owner can read and write to this
file, but not execute it.

3. r–: The next set of three characters is for the group. Anyone in this group has permission to read the
files only.

57

4. r–: The last set of three characters is for all other users. They can only read the file.

Another example demonstrates the different groups that could have access to a file or directory.

Figure 7.2: File Permissions with Groups

In the first and second listing, the owner and group are the same: “cbw”. However, with the third file, the
owner is “cbw”, but the group is “faculty”. Any user that is part of the “faculty” group will have read-
write-access to the file. The last file has a special set of permissions. Only the root user has access to this
file.

Changing File Permissions - Basic

Changing file permissions allows you to either add or remove permissions from certain files.

There is a file in the scripts directory named python-example.py. Try to run this script from the terminal.
Type ./example-python.py. An error message appears and denies permission to run the script.

Figure 7.3: Permission Denied

Now take a look at the file permissions for the script. Type ls -l python-example.py in the terminal. Adding
the filename as an optional argument to the ls command applies the command to only the specified file instead
of the entire directory.

The file permissions for the python script are: -rw-r–r–. This file has no execute permissions. That is why
permission was denied.

To change file permissions, use the chmod command, which stands for change mode. There are multiple
syntaxes for the command:

1. chmod [OPTION] [MODE] [FILE]

2. chmod [OPTION] [OCTAL-MODE] [FILE]

58 CHAPTER 7. FILE PERMISSIONS

Type chmod +x python-example.py. The +x means to add permission to execute the file.

Figure 7.4: Adding Execute Permissions

Look at the file permissions again using the ls command.

Figure 7.5: Verifying the Permissions have been Added

Now the file permissions for the script are: -rwx-r-xr-x. All groups may now run this script. Run the
program to see what it does. Type ./python-example.py. It is a simple Hello World program.

Changing File Permissions - Advanced

In the last example, adding the +x argument to the command added executable file permissions to all the
different categories (owner, group, and other). That may not be desirable if the file permissions need to be
restricted.

Type in the command chmod a+rwx,g-x,o-x python-example.py. Here is a breakdown of the command:

1. a+rwx: Give read-write-execute permissions to all three categories

2. g-x: Remove execute permissions from the group

3. o-x: Remove execute permissions from all other users

Now look at the permissions again using the ls command.

59

Figure 7.6: Advanced File Permissions

The file permission is now -rwx-rw-rw. Only the owner of the file has the ability to execute the file.

Changing File Permissions - Octal

Another way to change file permissions is by using octal mode. Octal mode uses the octal numeral system,
which is comprised of the numbers 0-7. Here is a breakdown of the octal numbers for file permissions.

1. 4: gives read permissions

2. 2: gives write permissions

3. 1: gives execute permissions

As noted earlier, there are three categories: owner, group, and other users. Each of these categories has
an assigned octal number. This means a three digit number assigns file permissions. The first number is
for the owner, the second is for the group, and the last is for other users. To determine the number used
for each category, sum the numbers of the associated file permissions. So if you want to give a category
read-write-execute permissions, it would be 4 + 2 + 1 = 7.

In the last example we gave read-write-execute permissions to the owner, and only read-write permissions
to the group and other users. In octal mode, this would be 766, and the command would be chmod 766
python-example.py.

In the scripts directory, there is a script named example2.sh. This is a shell script that does not have an
execute permission at the moment. Additionally, only the owner should be able to write to the script. Every
other category can read and execute the script. With these criteria, the proper octal would be 755. Go to the
terminal and type chmod 755 example2.sh.

Figure 7.7: Octal Permissions

60 CHAPTER 7. FILE PERMISSIONS

As a result of the command, the file permissions changed to -rwxr-xr-x, which is the desired outcome. To
learn the different combinations of octal numbers for the chmod command, go to http://chmodcommand.
com. This is a helpful website for beginners to learn chmod octal mode.

Command Summary

Command Purpose
ls -l [FILENAME] list FILENAME information in long format

chmod [MODE] [FILE] change permissions to MODE for FILE
chmod [OCTAL MODE] [FILE] change permission to OCTAL MODE for FILE

http://chmodcommand.com
http://chmodcommand.com

Chapter 8

Manual Pages

Manual pages are extremely helpful to learn the syntax and arguments for a command. Often, if you cannot
run a command properly, the solution can be found on the manual page.

To display all of the optional arguments for a command and to see more information about that command,
use the man command, which is short for manual. The syntax for the command is man [COMMAND], where
the command is what you want to see the manual page of. Go to your terminal and type in man chmod.

Figure 8.1: Manual Page for chmod

The below are parts of the manual pages for the chmod command. All man pages follow the following
common format:

1. Name – the name of the command and a short description

61

62 CHAPTER 8. MANUAL PAGES

2. Synopsis – summary of the command with its syntax

3. Description – description of the command

4. Options – list of optional arguments for the command and their descriptions

5. See Also – related commands and link to full documentation online

Figure 8.2: Options Part of Manual Pages

Figure 8.3: Misc Details in Manual Pages

63

Once you are done with the man page, press “q” to get back to the terminal.

Searching the Manual Pages

If you are unsure of which command to use, you can perform a general search on all of the manual pages to
see which ones contain a particular keyword. To do this, use theman command with the optional argument
k, followed by the keyword that you are searching for.

Go to the terminal and type in man -k sort.

Figure 8.4: Searching the Manual Pages

This search returns a list of all the commands that mention the term “sort”. Searching the man pages by
keyword is often underutilized, but it is extremely helpful to find the desired command.

Command Summary

Command Purpose
man [COMMAND] displays the manual page for COMMAND
man -k [KEYWORD] searchs all the manual pages for the KEYWORD

64 CHAPTER 8. MANUAL PAGES

Chapter 9

Complex Inputs

Definitions

1. Complex Input - input containing characters other than the standard English alphabet and numbers

2. Wildcard - characters that are used to substitute unknown characters in a search

3. Escape Character - a character that changes the interpretation of the subsequent character

Complex Input

So far all of the commands that have been introduced use input that contains only alphanumeric characters.
However, commands also use and interpret complex inputs, which contain wildcards, escape characters,
whitespace, or text enclosed in quotes. Examples of complex inputs are as follows:

1. *.txt

2. myfile.???

3. “Hello World”

4. \n

5. \t

6. ’$PATH’

Spaces (Whitespace)

Spaces are often themost overlooked complex input. In the shell, whitespace indicates the end of an argument
or command and the shell splits the commands and arguments accordingly. A common issue that can occur
is moving into a directory whose name contains a space.

65

66 CHAPTER 9. COMPLEX INPUTS

Figure 9.1: mkdir Without Whitespace

For example, you wish to create a single folder named resource files. If you use the command mkdir
resource files, the shell interprets two separate names and creates two new directories.

The proper way to make a directory (or file) that contains a space is to put the name in quotes. Go to the
terminal and type mkdir ’resource files’.

Figure 9.2: mkdir With Whitespace

Another issue that occurs with directory (or file) names that contain spaces is with the cd command. Type
cd resource files in the terminal, and it displays an error. To avoid the problem, enclose the directory name
in quotes: cd ’resource files’.

Figure 9.3: cd With Whitespace

Note: Avoid using spaces in filenames or directory names. This makes it difficult to perform operations on
such files and directories.

Quoting (Strong &Weak)

Quoting is a method of encapsulation that allows the shell to interpret commands and arguments that may
have spaces, other complex inputs, or special characters reserved for the shell. There are two types of quoting:

67

1. Strong Quoting - uses the single quote, and interprets everything literally (as it is)

2. Weak Quoting - uses the double quote, and the shell will evaluate variables

To see the differences between strong and weak quoting, use the echo command. The syntax for this com-
mand is echo [STRING]. The command will display the string to the standard output. Go to the terminal
and type echo $HOME. The $HOME is a special variable in the shell that is reserved for the home directory.
This command will display the home directory on the command line.

Now try the command echo ’$HOME’. This time, $HOME is enclosed by single quotes and the result is
different. The output is the string ‘$HOME’. Since single quotes are used here, the shell interprets the string
literally and does not expand it.

Lastly, try the command echo “$HOME”. This displays the home directory as in the first example. Since
double quotes are used, the shell will expand the variable and output the expansion to the command line.

Figure 9.4: Strong and Weak Quoting Examples

Wildcards

Wildcards are characters used as substitutes for one or more characters in a search, giving the search more
flexibility. Three types of wildcards are used in a Linux environment:

1. * (star wildcard)

2. ? (question mark wildcard)

3. [] (square brackets wildcard)

When a command uses a wildcard, the shell will interpret the wildcard, perform the query, and then use the
results to execute the rest of the command.

Star Wildcard

The star wildcard is the asterisk. This is the most versatile wildcard. It can represent any number of char-
acters. Navigate to a directory that contains text files and run the command ls -l *.txt. This command will

68 CHAPTER 9. COMPLEX INPUTS

search for any file or directory in the directory with an ending of .txt. The shell will transform this to ls -l
myfile.txt MYFILE.txt.

Figure 9.5: Star Wildcard

Question Mark Wildcard

The next wildcard is the question mark (?). This wildcard represents only one character. Navigate to the
scripts directory and type in the command file example?.sh. The shell transforms this to file example2.sh.

Figure 9.6: Question Mark Wildcard

Square Brackets Wildcard

The last wildcard are the square brackets ([]). This wildcard substitutes all the characters that are enclosed
within the brackets. In the same scripts directory, type in the command file *[y]*. This command will
search for anything in the directory that contains the character y. The shell transforms the command to file
python-example.py.

Figure 9.7: Square Brackets Wildcard

69

Escape Characters

Escape characters are important when using the command line because they change the meaning of the next
sequence of characters so that the shell interprets them in a particular manner.

The following are commonly used escape characters.

Escape Character Interpretation
\” double-quote
\’ single-quote
\n newline
\t horizontal tab
\b backspace

Earlier there was an issue with spaces in the name of a directory. Recall the command: mkdir ’resource
files’. The name of the directory was enclosed in single quotes so that the shell could interpret the name
of the directory properly. However, an alternative command could be used: mkdir resource files. In this
command, the escape character is “ ”, which is a backslash followed by a space. When this command is
processed, the shell will interpret the escape character as a space and therefore, the directory name does not
need to be enclosed in quotes.

A simple example of an escape character used in a command can be shown by using the echo command
again. Try the command echo -e “Hello\nWorld”. The e argument allows the echo command to interpret
escape characters.

Figure 9.8: Escape Characters

Command Summary

Command Purpose
echo [STRING] displays the STRING to the standard output

70 CHAPTER 9. COMPLEX INPUTS

Chapter 10

Process Management

Definitions

1. Process - a program that is being executed

2. Foreground Process - process that is active in the terminal and may require additional input

3. Background Process - process that runs without being connected to an input source

Foreground and Background Processes

There are two ways to run a process, either in the foreground or in the background. A foreground process
takes input from the keyboard and outputs to the screen or terminal. All of the commands so far have been
processes that run in the foreground.

A background process operates without being connected to the keyboard. If a background process requires
input, it will wait for the input. If a process runs in the background, then other commands and processes can
be started from the terminal and they do not need to wait for the background process to complete. To have a
process run in the background, put an ampersand (&) symbol at the end of a command. An example of this
is provided later in this section.

Process States

A process state changes over time as the Linux environment changes. There are four process states in Linux:

1. Running - current process in the system or waiting to be assigned to a CPU

2. Waiting - process is waiting for system resources or for an event to occur

3. Stopped - process is not running

4. Zombie - process has been completely halted, but still has an entry in the process table

71

72 CHAPTER 10. PROCESS MANAGEMENT

Viewing Active Process

Two commands can be used to view the active processes on the machine: ps and top. ps stands for process
status. The syntax for this command is ps [OPTIONS]. There are many optional arguments for this command
and they can be used in various combinations. Go to the terminal and type ps.

Figure 10.1: ps Command

The output displays four columns of information:

1. PID - the process ID; each process is assigned a unique number

2. TTY - terminal type associated with the process

3. TIME - CPU time used by the process

4. CMD - the command that started the process

Some additional arguments that can be added to the ps command are e and f. The e argument will list all the
processes in the system and the f argument shows all the information about the process. Try the command
ps -ef in the terminal.

Figure 10.2: ps -ef Command

There is more output than is displayed in the picture above. There are now eight columns of information for
each process:

1. UID – user ID of the person who ran the process

73

2. PID – [SAME AS ABOVE]

3. PPID – parent process ID, the ID of the process that started this process

4. C – CPU utilization of the process

5. STIME – time that the process was started

6. TTY – [SAME AS ABOVE]

7. TIME – [SAME AS ABOVE]

8. CMD – [SAME AS ABOVE]

The other command to view active processes is top. The syntax for the command is top [OPTIONS]. Go to
the terminal and type top.

Figure 10.3: top Command

Killing Processes

If a process has frozen and becomes unresponsive, you may have to end it. To end a process, use the kill
command. The syntax for this command is kill [OPTIONS] [PID]. To kill a process, the process id (pid)
must be known, and that is how the operating system knows which process to end.

For example, say Firefox was opened, but became unresponsive and had to be killed through the command
line. First, run the ps command to locate the pid number for the Firefox process. The next section will
explain how to find the pid quickly without having to read all the output of ps. Upon a quick search, the pid
is 2973. Then type in the terminal kill 2973.

74 CHAPTER 10. PROCESS MANAGEMENT

Figure 10.4: kill Command

If the ps command is run again, no process should be listed relating to Firefox.

Now if there are multiple processes that are frozen, unresponsive, or that are replicating at an exponential
rate, there is a command to end all processes. That command is pkill. The syntax for this command
is pkill -u [USERNAME]. Applying the optional u argument along with the username will kill ALL
processes that were started by the user.

A lot of my processes such as Firefox, word processor, and the file explorer are now unresponsive and I want
to end all of them. To do so, I would type in my terminal: pkill -u learninglinux.

Figure 10.5: pkill Command Before

75

After executing this command, none of the programs are running, and the terminal was stopped as well.

Figure 10.6: pkill Command After

Moving Processes To and From the Background and Foreground

Running processes in the background can be convenient because you can still use the command line while the
process runs. For example, downloading a file from the command line will display the progress of the down-
load, but this may be time consuming. The command to download a file is wget. The syntax for this com-
mand is wget [URL]. The command wget releases.ubuntu.com/18.04/1/ubuntu-18.04.1-desktop-amd64.iso
will download the operating system file for Ubuntu 18.04 LTS. This is a large file and this download would
take at least 10 min.

Warning: Do not try this command in the terminal

76 CHAPTER 10. PROCESS MANAGEMENT

Figure 10.7: wget Command

During the download, the terminal cannot be used since it displays the progress of the download in the
foreground. However, by moving the process to the background, the command line can be used to do other
things as the file is being downloaded. To have a process run in the background, add the ampersand (&)
symbol directly after the command. Now the command would be wget releases.ubuntu.com/18.04/1/ubuntu-
18.04.1-desktop-amd64.iso &.

Figure 10.8: wget Background

The process is running in the background now and will continue to run until it is complete or it is stopped
by the operating system.

To view the processes that are running in the background, use the jobs command. The following is the output
of the jobs command and the download status is moved to the foreground.

77

Figure 10.9: jobs Command

To move the most recnt background process to the foreground, use the fg command. The other way to move
a process back to the foreground is to specify the job number as an argument. The jobs command displays
the job number associated with a background process.

Command Summary

Command Purpose
ps [OPTIONS] displays all the active processes

top displays all the active processes
kill [PID] kill the process with the given PID

pkill -u [USERNAME] kills all processes started by USERNAME
wget [URL] downloads a file from the URL

jobs displays the status of all the current jobs
fg moves the most recent job to the foreground

78 CHAPTER 10. PROCESS MANAGEMENT

Chapter 11

Filters and Regular Expressions

Definitions

1. Regular Expression - sequence of characters that define a search pattern

Filtering

Filtering allows you to search through data in specified ways. There are basic filtering techniques such as
getting the first five items of a list, or sorting the items alphabetically. Advanced filtering techniques make
use of regular expressions (regex) in order to search for very specific data items.

The examples in this section make use of a file called randomness.txt, which includes 25 alphanumeric
strings, some of which are words.

79

80 CHAPTER 11. FILTERS AND REGULAR EXPRESSIONS

Head

The head command outputs the first n number of lines. The syntax for this command is head [OPTIONS]

[FILE]. To see the first 5 lines of the randomness.txt file, go to the terminal and type in head -5 random-
ness.txt

Figure 11.1: head Command

The output is the first five lines of the file.

Tail

The tail command is just like the head command, but it will output the last n number of lines. The syntax
for the tail command is tail [OPTIONS] [FILE]. To see the last 10 lines of the randomness.txt file, go
to the terminal and type in tail -10 randomness.txt.

Figure 11.2: tail Command

The output is the last 10 lines of the randomness.txt file.

81

Sorting

Sorting is a powerful filtering technique used in many algorithms and applications. To sort the contents of a
file, use the sort command. The syntax is sort [OPTIONS] [FILE]. To sort the randomness.txt file, go
to the terminal and type in sort randomness.txt.

Figure 11.3: sort Command

By default the sort command will sort in alphabetical order, but additional arguments can be specified in the
command to sort by different categories.

Word Count

Another filtering technique is to get the word count of a file. To do this, use the wc command, which stands
for word count. The syntax for the wc command is wc [OPTIONS] [FILE]. To get the word count of the
randomness.txt file, go to the terminal and type in wc randomness.txt.

Figure 11.4: wc Command

The output displays the number of words, which is 25; it also displays the number of characters in the file as
well.

82 CHAPTER 11. FILTERS AND REGULAR EXPRESSIONS

Unique Items

In some cases, there may be duplicate items in a data set. To search for the unique items in a data set, use
the uniq command, which stands for unique. The syntax for this command is uniq [OPTIONS] [INPUT].
Go to the terminal and type in uniq randomness.txt.

83

Figure 11.5: uniq Command

The output is all the strings in the file minus any repeated lines. However, it can be difficult to determine
if any lines have been omitted or not. This can be easily done with piping which is discussed in the next
chapter.

Regular Expressions

A regular expression, also called regex, is a combination of wildcards and other information which builds a
particular search pattern. Regex is a powerful filtering tool, but it is often difficult to understand. Only a few
basic examples are covered in this section.

Regex Syntax

The following are the various characters that are used in a regex:

1. . (dot) – a single character

2. ? - preceding character matches zero or one times

3. * - preceding character matches zero or more times

4. + - preceding character matches one or more times

5. [a-z] – character is included in the range of characters specified by the brackets

6. [^ a-z] – character is not one of those included in the brackets in that range

84 CHAPTER 11. FILTERS AND REGULAR EXPRESSIONS

7. {n} – preceding character matches exactly n times

8. {n, m} – preceding character matches at least n times, but not more than m times

9. ^ – matches at the beginning of the line

10. $ – matches at the end of the line

The above can be combined in various ways in order to build the desired pattern.

Several different commands can use regex in order to find a matching pattern. For all the following examples,
we use the grep command, which stands for global regular expression print. The syntax of this command is
grep [OPTIONS] PATTERN [FILE].

For the first example, we try to find words that only contain lowercase letters. The regex for this would be
’[a-z]\+’. [a-z] covers all the lowercase letters in the alphabet and the + will match at least one or more
lowercase letter. Now, the grep command would be grep -x ’[a-z]\+’ randomness.txt. Pay attention to the x
optional argument. This will search entire lines instead of individual characters.

Figure 11.6: Basic alphabetical grep search

As seen in the output above, only the words with all lowercase letters are displayed.

For the next example, we try to search for lines that endwith a number. The regex for this would be ’[0-9]$’.
The [0-9] represents all the numbers, and the ’$’ matches the end of the line for the numbers. Now, the grep
command would be grep ’[0-9]$’ randomness.txt.

Figure 11.7: Basic numeric grep search

As seen in the output above, there are three lines that end in a number.

85

For the last example, we will try to find the lines that have a number followed by a letter. The regex for this
would be ’[0-9][a-zA-Z]’. The [0-9] represents the numbers and the [a-zA-Z] represents all upper and
lowercase letters. The grep command would be grep ’[0-9][a-zA-Z]’ randomness.txt.

Figure 11.8: Advanced Grep Search

Command Summary

Command Purpose
head [OPTIONS] [FILE] return lines from the beginning of the FILE
tail [OPTIONS] [FILE] return lines from the end of the FILE
sort [OPTIONS] [FILE] sort the lines of FILE alphabetically

uniq [OPTIONS] [INPUT] return non-repeating lines from the INPUT
wc [OPTIONS] [FILE] give the word count of FILE

grep [OPTIONS] PATTERN [FILE] search for the PATTERN in the lines of FILE

86 CHAPTER 11. FILTERS AND REGULAR EXPRESSIONS

Chapter 12

Input Output Redirection

Input & Output

Many of the examples used throughout the sections take advantage of inputting a command and awaiting for
a particular output. These input and output are are known as data streams, which can take many forms.

Figure 12.1: Input & Output Basic Example

In this example, the input is the command ls -a, which is taken from the keyboard. And the output displays
a list of all the files and directories in the terminal.

These data streams can be put into three categories:

1. Standard Input (stdin): input fed into the program, defaults to the keyboard

2. Standard Output (stdout): output of the program, defaults to the terminal

3. Standard Error (stderr): error messages of the program, defaults to the terminal

87

88 CHAPTER 12. INPUT OUTPUT REDIRECTION

Redirecting Input

Commands can take input from a source other than the keyboard by using the “<” symbol. To determine the
number of lines in a file, use the wc command. The syntax for this command is wc [FILE] [OPTIONS].
Type in wc -l words.txt in the terminal. This will output the number of lines in the file and the filename.

Figure 12.2: Redirecting Input

Now, type in wc -l < words.txt. The output is just 10. That is because the wc command uses input redirect
from the file, and therefore does not know the filename.

Redirecting Output

Commands can redirect their output to places other than the terminal. For example, instead of outputting the
results directly to the terminal, they can be put in a file. To redirect the output, use the “>” and then specify
where the output should go. To sort ten words and put all the sorted words in a file, use the sort command.
Type in the command sort words.txt > sorted.txt. This will sort all the words in the words.txt file and put the
results in the sorted.txt file.

Figure 12.3: Redirecting Output

Then use the cat command to view the sorted words. Type in cat sorted.txt.

89

Piping and Command Chaining

Piping redirects the output of one command to the input of another command. Piping is very powerful
because it enables you to use several commands without having to save the output to temporary files and
such.

In the process management chapter, we had to parse through the output of the command ps -ef in order to find
the process ID of a certain program that was running in order to kill the program. Using pipes streamlines
this process even further. Try the command ps -ef | grep ’firefox’.

Figure 12.4: Chaining the ps and grep commands

The output of this command is a trimmed version of the output of the ps -ef command. As seen in the before,
the grep command will return all the lines that contain the given word. And combining these two commands
finding the proper process ID simpler.

In the filtering and regular expressions chapter, we ran the uniq command to display the unique items in
the randomness.txt file. However, it was difficult to determine if any repeated items were removed. To
determine if any items were repeated in the randomness.txt file, we can combine the output of the uniq
command with the wc command. Go to the terminal and type in uniq randomness.txt | wc.

Figure 12.5: Chaining the uniq and wc commands

The output of this chain of commands is 25. And since the original file has 25 strings in it, we know that
there were no repeated items.

90 CHAPTER 12. INPUT OUTPUT REDIRECTION

Chapter 13

Basic Networking

Definitions

1. Hostname - label assigned to a device connected to a computer network

Networking

Networking enables you to connect to, send, and receive information from other machines.

Secure Shell

Themost important method of communicating with another computer with the shell is via secure shell or ssh.
The ssh command will run the OpenSSH SSH client, which is a remote login program. The syntax for the ssh
command is ssh [OPTIONS] [HOSTNAME]. In general, only the hostname needs to be provided with the ssh
command, but there are cases where a username is needed. One such example is when you need to login to the
CCIS Servers. To login to these servers, you have to use the following format: ssh username@hostname.
More specifically, for the CCIS Servers, it would be ssh [your username]@login.ccs.neu.edu.

Go to the terminal and try to log in to the CCIS Server.

91

92 CHAPTER 13. BASIC NETWORKING

Figure 13.1: ssh Command

Youwill be prompted for a password and once you are connected to the CCIS Server you will be in an entirely
new bash shell that is run by the server.

Figure 13.2: ssh Exit

Once you are done on the remote server, you can use the exit command to close the connection to the CCIS
server and return to the shell on your localhost.

Secure Copy

Simply connecting to another machine may not be enough. Often, files need to be transferred between
machines. In order to do this, use the scp command, which stands for secure copy. The syntax for the scp
command is scp [OPTIONS] [LOCALHOST] [REMOTEHOST]. This command can be used to transfer files
from your localhost (your machine) to a remote host (the CCIS Server) or vice versa. It can also be used to
transfer files from two remote hosts (e.g. from the CCIS server to another external server).

To transfer a file from the localhost to a remote host, the scp command has the following syntax:
scp [FILENAME] [REMOTEHOST FILEPATH]. To transfer a file, I would type in scp testing.tar.gz mpe-
trauskas@login.ccs.neu.edu:/home/mpetrauskas/learninglinux

93

Figure 13.3: Copying a file to a Remote Server

The file was successfully transferred to the CCIS Server, and we can see the file once we log in into the
server.

Figure 13.4: Confirming the file has been transferred

To transfer a file from a remote host to a localhost, the scp command has the following syntax: scp

[REMOTEHOST FILEPATH] [LOCALHOST FILEPATH]. The file will be transferred from the remote host
at the given filepath to the filepath on the localhost. To transfer a file, I would type in scp mpe-
trauskas@login.ccs.neu.edu:/home/learninglinux/testing2.tar.gz ∼. Note that the “∼” at the end of the com-
mand indicates the home directory on the virtual machine.

Figure 13.5: Copying a file from a Remote Server

94 CHAPTER 13. BASIC NETWORKING

It is simple to verify that the file has been successfully transferred back to the localhost. Check your home
directory for the file. Now, try this out on some files and move them between your virtual machine and the
CCIS Server.

Note: the scp command can also transfer entire directories between machines.

Command Summary

Command Purpose
ssh [HOSTNAME] remotely connect to the specified HOSTNAME

scp [LOCALHOST] [REMOTEHOST] copies the file at the LOCALHOST
filepath to the REMOTEHOST filepath

scp [REMOTEHOST] [LOCALHOST] copies the file at the REMOTEHOST
filepath to the LOCALHOST filepath

exit closes the active bash shell

Chapter 14

Command Cheat Sheet

The following is a table of the most important commands covered in this guide and should be used as a
reference when the syntax or purpose of a command is needed.

File System Navigation

Command Purpose
pwd print name of current/working directory

cd [DIR] change the working directory to DIR
ls list directory contents

File Manipulation

Command Purpose
file [FILENAME] Determines the file type of FILENAME

mkdir [DIRECTORY] Make the directory DIRECTORY
cp [SOURCE] [DEST] Copy the SOURCE TO DEST

rm [FILENAME] Remove or delete FILENAME
mv [SOURCE] [DIRECTORY] Move the SOURCE file or directory to DIRECTORY

mv [SOURCE] [DEST] Rename the SOURCE file or directory to DEST

95

96 CHAPTER 14. COMMAND CHEAT SHEET

Process Management

Command Purpose
ps [OPTIONS] displays all the active processes

top displays all the active processes
kill [PID] kill the process with the given PID
wget [URL] downloads a file from the URL

jobs displays the status of all the current jobs
fg moves the most recent job to the foreground

Filtering

Command Purpose
head [OPTIONS] [FILE] return lines from the beginning of the FILE
tail [OPTIONS] [FILE] return lines from the end of the FILE
sort [OPTIONS] [FILE] sort the lines of FILE alphabetically

uniq [OPTIONS] [INPUT] return non-repeating lines from the INPUT
wc [OPTIONS] [FILE] give the word count of FILE

grep [OPTIONS] PATTERN [FILE] search for the PATTERN in the lines of FILE

Networking

Command Purpose
ssh [HOSTNAME] remotely connect to the specified HOSTNAME

scp [LOCALHOST] [REMOTEHOST] copies the file at the LOCALHOST
filepath to the REMOTEHOST filepath

scp [REMOTEHOST] [LOCALHOST] copies the file at the REMOTEHOST
filepath to the LOCALHOST filepath

exit closes the active bash shell

Miscellaneous

Command Purpose
chmod [MODE] [FILE] change permissions to MODE for FILE

chmod [OCTAL MODE] [FILE] change permission to OCTAL MODE for FILE
man [COMMAND] displays the manual page for COMMAND
man -k [KEYWORD] searchs all the manual pages for the KEYWORD

echo [STRING] displays the STRING to the standard output

	1 The Virtual Machine
	2 Creating a VM with VMWare Workstation
	3 Creating a VM with VirtualBox
	4 Basic Navigation of the Command Line
	5 File Basics
	6 File Manipulation
	7 File Permissions
	8 Manual Pages
	9 Complex Inputs
	10 Process Management
	11 Filters and Regular Expressions
	12 Input Output Redirection
	13 Basic Networking
	14 Command Cheat Sheet

