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Abstract of the Dissertation

Measuring Algorithms in Online Marketplaces

by

Le Chen

Doctor of Philosophy in Computer Science

Northeastern University, May 2017
Dr. Christo Wilson, Adviser

The integration of Big Data and algorithms have revolutionized many aspects of modern
life. One of the revolutions is happening in markets, where data-centric algorithms are gradually
automating services that used to require manual operations. For example, Real-Time Bidding (RTB)
algorithms are widely adopted in the online advertising network, and are expected to grow from
generating 31% of the revenue of the entire digital ads market in 2015 to 48% in 2020. Mortgage and
credit lenders in the loan markets use algorithms to make lending decisions based on Big Data rather
than traditional credit reports. Outside of advertising and financial markets, ride sharing companies
like Uber and Lyft use surge pricing algorithms to dynamically balance the gaps between car supply
and user demand. Sellers in e-commerce markets use dynamic pricing tools to adjust product prices
and manage inventories in real-time. Surveys show that as of 2013, 13% of retailers had deployed
dynamic pricing algorithms.

Algorithms are powerful tools that have the potential to improve the efficiency of markets,
but come at a cost of possible harms. On one hand, algorithms can be beneficial: RTB maps billions
of Internet users to customized advertisements based on their interests in real time, and thus increases
the effectiveness for both advertisers and publishers in terms of advertising inventory sold. Similarly,
ride sharing has redefined the transportation market by matching millions of drivers and riders around
the globe in real-time. On the other hand, evidence shows that problems may be caused by algorithms,
such as racial discrimination on Google’s advertisement services, or unpredictable prices shown to
users in online marketplaces.

Unfortunately, we currently lack measurement tools or methodologies to audit the behavior
of these algorithms. As a result, we are unable to measure the impact of these algorithms on people.
For example, the general public is unable to access the details about how credit scores and prices are
calculated in online marketplaces, since algorithms are typically proprietary trade secrets. Similarly,
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for Machine Learning algorithms, the data for training the predicative models may also be unavailable.
The lack of transparency surrounding algorithms and the data that powers them has led to concerns
about whether they are being manipulated by companies to increase their own profit, and whether
they are fair and unbiased to users.

The goal of my work is to develop methodologies and build measurement tools to audit and
understand the impact of algorithms in online marketplaces. I focus on three types of marketplaces:
the ride sharing marketplace Uber, the e-commerce marketplace Amazon, and human labor market-
places Indeed, Monster, and CareerBuilder. Algorithms play crucial roles on all these platforms, and
potential fairness and manipulation issues caused by the algorithms may be present in these systems.

First, I examine Uber’s surge pricing algorithm to answer questions such as whether
ride prices are true reflections of supply and demand dynamics, and whether surge prices can be
manipulated by the company or passengers. I gather four weeks of data from Uber by emulating
43 copies of the Uber smartphone app and distributing them throughout downtown San Francisco
(SF) and midtown Manhattan. Using my dataset, I am able to characterize the dynamics of Uber in
SF and Manhattan, as well as identify key implementation details of Uber’s surge price algorithm.
My observations about Uber’s surge price algorithm raise important questions about the fairness and
transparency of this system.

Next, I investigate two major and correlated algorithmic components on Amazon Market-
place that determine the product prices paid by consumers: the Buy Box and dynamic pricing by
sellers in the market. In this study, I first conduct an in-depth investigation on the features and weights
that drive the Buy Box algorithm. Then I develop a methodology for detecting dynamic pricing by
sellers, and use it to empirically analyze their prevalence and behavior on Amazon Marketplace. I
gather four months of data covering all merchants selling any of 1,641 best-seller products. Using
this dataset, I am able to uncover the algorithmic pricing strategies adopted by over 500 sellers. I
then explore the characteristics of these sellers and characterize the impact of these strategies on the
dynamics of the marketplace.

Finally, I study the ranking algorithms that power resume search engines on hiring websites,
and investigate gender-based inequalities in their search results. I collect search results from Indeed,
Monster, and CareerBuilder based on 35 job title queries in 20 American cities, resulting in data on
over 855K job candidates. Using statistical tests and regression analysis, I find statistically significant
evidence of two types of inequality on all three websites (ranking bias and unfairness), almost always
to the detriment of female candidates. Motivated by these findings, I propose two alternative ranking
methods that encode different definitions of fairness, and examine the inherent tradeoffs posed by
trying to achieve gender-fairness in hiring markets.

Altogether, my work presents techniques to measure the impact of algorithms in online
marketplaces. My methods can be extended to other platforms and services, in order to increase
transparency and provide insights into how these systems affect people. Ultimately, I hope that my
research helps people to find and mitigate issues present in opaque algorithmic systems.
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Chapter 1

Introduction

The integration of Big Data and algorithms have revolutionized many aspects of modern

life. One of the revolutions is happening in markets, where data-centric algorithms are gradually

automating services that used to require manual operations. For example, Real-Time Bidding (RTB)

algorithms [54,191,192] are widely adopted in online advertising networks, and are expected to grow

from generating 31% of the revenue of the entire digital ads market in 2015 to 48% in 2020 [14]. In

the loan market, mortgage and credit lenders use algorithms to make lending decisions based on Big

Data rather than traditional credit reports [123]. Outside of advertising and financial markets, ride

sharing companies like Uber and Lyft use surge pricing algorithms to dynamically balance car supply

and user demand [2, 3]. In e-commerce markets, sellers use dynamic pricing tools to adjust product

prices and manage inventories in real-time [93]. Surveys show that as of 2013, 13% of retailers had

deployed dynamic pricing algorithms [26].

On the one hand, algorithms are powerful tools that have the potential to improve the

efficiency of markets. For example, RTB maps billions of Internet users to customized advertisements

based on their interests in real-time, and thus increases the effectiveness for both advertisers and

publishers in terms of advertising inventory sold [167]. Similarly, ride sharing companies have

redefined the transportation market by expanding beyond the fixed limit of taxi supply in each city

and matching millions of drivers and passengers around the globe in real-time.

On the other hand, algorithms may introduce harms due to design flaws. For example,

products with unexpected prices may be shown to users in online marketplaces: two competing dy-

namic pricing algorithms inadvertently raised the price of a used textbook to $23M on Amazon [175].

In ride sharing services, concerns about the Uber surge pricing algorithms [80] were exacerbated

when Uber was forced to publicly apologize and refund rides after prices surged during Hurricane
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CHAPTER 1. INTRODUCTION

Sandy [106] and the Sydney hostage crisis [128]. As of April 2016, Uber was getting sued for

allegedly using surge pricing to illegally fix prices [111].

Furthermore, for Machine Learning based algorithms, training data generated by real

people may encode human-biases that may also cause harms. For example, racial discrimination

was found on Google’s advertisement services: Sweeney showed that there is a positive correlation

between searching for African American names and returning arrest record advertisements [176].

Similarly, Amit et al. designed an automated tool that explored the interaction of user behaviors,

Google’s ads, and Ad Preferences, and conducted experiments to uncover gender discrimination on

Google’s ad service [64].

The potential harms of algorithms and Big Data have drawn attention from governmental

regulators. The White House released a report warning that certain Big Data analytic techniques

being used by businesses may discriminate against customers [126]. The Federal Trade Commission

(FTC) held a public workshop to explore the potential impact of Big Data on low-income and

under-served populations [15]. The European Parliament conducted a study to investigate price

discrimination by e-commerce sites against consumers based on place of residence or nationality [4].

Although both the general public and regulators are aware of the possible harms algorithms

may bring to people, unfortunately there is a lack of measurement tools and methodologies to audit

the behavior of these algorithms. As a result, we are unable to measure the impact of these algorithms

on people. For example, the general public and regulators are unable to access the details about

how credit scores and prices are calculated in online marketplaces, since algorithms are typically

proprietary trade secrets. Similarly, for Machine Learning algorithms, the data for training the

predicative models may also be unavailable.

In this thesis, I aim to address this situation by developing methodologies and building

measurement tools to audit and understand the impact of algorithms in online marketplaces. My work

focuses on three types of marketplaces: the ride sharing marketplace Uber [51], the e-commerce

marketplace Amazon [52], and human labor marketplaces Indeed, Monster, and CareerBuilder. In

particular, my thesis will make contributions outlined in the following paragraphs.

1.1 Uber

Uber has emerged as a leader in the sharing economy. Uber is a “ride sharing” service

that matches willing drivers (i.e., anyone with a car) with customers looking for rides. Uber charges

passengers based on time and distance of travel; however, during times of high demand, Uber uses a
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“surge multiplier” to increase prices. Uber provides two justifications for surge pricing [84]: first, it

reduces demand by pricing some customers out of the market, thus reducing the wait times for the

remaining customers. Second, surge pricing increases profits for drivers, thus incentivizing more

people to drive during times of high demand. Uber’s business model has become so widely emulated

that the media now refers to the “Uberification” of services [35].

While Uber has become extremely popular, there are also concerns about the fairness,

efficacy, and disparate impact of surge pricing. The key difference between Uber and other sharing

economy marketplaces is that Uber is a black-box: they do not provide data about supply and demand,

and surge multipliers are set by an opaque algorithm. This lack of transparency has led to concerns

that Uber may artificially manipulate surge prices to increase profits [152], as well as apprehension

about the fairness of surge pricing [81].

I present the first in-depth investigation of Uber. To understand the impact of surge pricing

on passengers and drivers, I gather four weeks of data from Uber by emulating 43 copies of the Uber

smartphone app and distributing them in a grid throughout downtown San Francisco and midtown

Manhattan. By carefully calibrating the GPS coordinates reported by each emulated app, I am able

to collect high-fidelity data about surge multipliers, estimated wait times (EWTs), car supply, and

passenger demand for all types of Ubers (e.g., UberX, UberBLACK, etc.). I validate my methodology

using ground-truth data on New York City (NYC) taxicabs.

This measured data enables me to identify key implementation details of Uber’s surge

price algorithm, which also illuminates design flaws in the algorithm related to opacity and incentive

failure.

Opacity. The implementation details of Uber’s surge pricing algorithm are hidden from

both passengers and drivers. Unfortunately, this opacity hides flaws. For example, as discussed in § 3,

I observe that Uber has manually divided cities into “surge areas” with independent surge prices. The

divided regions create opportunities for exploitation by passengers, as I demonstrate how passengers

can significantly reduce surge prices 10-20% of the time by walking to a neighboring surge areas.

Furthermore, I discover that prices update every 5 minutes, which makes it difficult for drivers to

optimize their behavior in order to capture surge revenues.

Similarly, opacity hides bugs. For example, as I show in § 3, in April 2015, Uber began

serving surge prices to users that did not always match the prices returned by the Uber official API.

Furthermore, surge prices were no longer uniform for users, even if they were in the same surge area

at the same time. I reported this finding to Uber, and their engineers confirmed that this behavior was
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caused by a bug in their system. This bug raised serious fairness issues in the Uber system, and was

unnoticed for months.

Incentive Failure. The motivation behind surge pricing is to use high fares to incen-

tivize more drivers to pick up passengers in the high-demand areas, as well as to temporarily reduce

the passenger demand. However, by analyzing the movements and actions of Uber drivers, I show

that surge prices only have a small, positive effect on vehicle supply, but a large, negative impact

on passenger demand, resulting in less booked cars in the surging areas. Moreover, I observe that

drivers flee from the surging areas, probably due to the decrease in demand. This contradicts the

motivation of Uber’s surge pricing algorithm. An open market would not suffer from this type of

failure because information about supply and demand would allow passengers and drivers to naturally

reach equilibrium.

1.2 Amazon Marketplace

The rise of e-commerce has unlocked practical applications for algorithmic pricing (some-

times referred to as dynamic pricing algorithms or Revenue/Yield Management). Algorithmic pricing

strategies are challenging to implement in traditional retail settings due to lack of data (e.g., com-

petitors’ prices) and physical constraints (e.g., manually relabeling prices on products). In contrast,

e-commerce is unconstrained by physical limitations, and collecting real-time data on customers and

competitors is straightforward. Travel websites are known to use personalized pricing [89], while

some e-retailers are known to automatically match competitors prices [44, 194].

While algorithmic pricing can make merchants more competitive and potentially increase

revenue, it also creates new challenges. First, poorly implemented pricing algorithms can interact

in unexpected ways and even produce unexpected results, especially in complex environments

populated by other algorithms. For example, two competing dynamic pricing algorithms inadvertently

raised the price of a used textbook to $23M on Amazon [175]; reporters have noted that similar

algorithmic pricing also exists in day-to-day commodities [18]. Second, dynamic pricing algorithms

can implement collusive strategies that harm consumers. For example, the US Justice Department

successfully prosecuted several individuals who implemented a price fixing scheme on Amazon using

algorithms [9]. Unfortunately, regulators and the public currently lack comprehensive knowledge

about the prevalence and behavior of algorithmic pricing algorithms in-the-wild.

In this study, I empirically analyze deployed algorithmic pricing strategies on Amazon
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Marketplace. Specifically, my goal is to understand what algorithmic pricing strategies are used

by participants in the market, how prevalent these strategies are, and ultimately how they impact

customer experience. I chose to focus on Amazon for three reasons: first, Amazon is the largest

e-commerce destination in the US and Europe [39]. Second, Amazon is an open marketplace

populated by third-party sellers, as well as Amazon itself. Third, Amazon’s platform provides APIs

that are specifically designed to facilitate algorithmic pricing [5]. Fourth, Amazon’s loyalty program

(Amazon Prime) has been very successful: more than half of all Amazon customers are estimated to

be Prime subscribers [166]. The existence of the Prime program gives me additional opportunities to

investigate competition and incentives in the Amazon marketplace.

To perform this study, I develop a novel methodology to uncover sellers that are likely

using algorithmic pricing. I collect five months of data from 1,641 of the most popular products on

Amazon. I gather information about the top-20 sellers of each product every 25 minutes, including

the sellers’ prices, ratings, whether their products are eligible for two-day Prime shipping, and other

attributes. I use this data to analyze changes in price over time, as well as compare the attributes of

sellers. I focus on top selling products because they tend to have multiple sellers, and thus are likely

to exhibit more competitive dynamics.

I begin by analyzing the algorithm underlying Amazon’s Buy Box. This algorithm deter-

mines, for a given product being sold by many sellers, which of the sellers will be featured in the Buy

Box on the product’s landing page (i.e., which seller is the “default” seller). As shown in Figure 4.1,

customers use the Buy Box to add products to their cart; sellers not selected for the Buy Box are

relegated to a separate webpage. The precise features and weights used by the Buy Box algorithm are

unknown [31], yet the algorithm is of critical importance since 82% of sales on Amazon go through

the Buy Box [177]. For my purposes, understanding the Buy Box algorithm is important because

sellers may choose dynamic pricing strategies that maximize their chance of being selected by the

algorithm.

Next, I examine the dynamic pricing strategies used by sellers in Amazon Marketplace. To

identify pricing algorithms, I treat the target price of each product (e.g., the lowest advertised price

or Amazon’s price) as a time series, and use correlative analysis to identify specific sellers whose

prices track the target price over time. Overall, I identify over 500 sellers who are very likely using

algorithmic pricing.

I then compare the characteristics of algorithmic and non-algorithmic sellers, as well as

Prime and non-Prime sellers (i.e., those sellers who do and not offer two-day Prime shipping). I

observe that 43% of algorithmic sellers offer Prime shipping, demonstrating a strong correlation
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between the use of sophisticated inventory management and fulfillment systems.

Finally, I use simulations of different customer buying strategies to evaluate the success of

sellers in the Amazon Marketplace in terms of purchases (i.e., how many items they will sell) and

revenue. I observe that algorithmic sellers have a significant advantage over non-algorithmic sellers

in terms of purchases and revenue because they occupy the Buy Box more frequently, and because

they are often able to charge higher prices than competing sellers.

Comparing the characteristics between algorithmic and non-algorithmic sellers, I discover

two fairness issues on Amazon Marketplace: high dynamics and feedback loops.

High Dynamics. Amazon allows sellers to update product price at any time. This

feature adds fluidity to the market, but also introduces high dynamics. As I show in § 4, the advertised

price in the Buy Box for products with algorithmic sellers is significantly more volatile than for

products without any algorithmic sellers. These rapidly fluctuating prices may lead to customer

dissatisfaction [18].

Feedback Loops. I observe that algorithmic (and Prime) sellers appear to be more suc-

cessful than non-algorithmic (non-Prime) sellers: they offer fewer products, but receive significantly

higher amounts of customer feedback, which suggests they have much higher sales volume. As I

show in § 4, number of feedback is a strong feature for winning the Buy Box. This causes algorithmic

sellers to “win” the Buy Box more frequently, even when they do not offer the lowest price for a

given product, which may further contribute to their feedback scores. This “strong-gets-stronger”

feedback loop makes the competition more difficult for sellers who do not adopt algorithmic pricing.

I also run simulations to investigate how much sellers who are not winning the Buy Box

would need to lower their prices to “change their fate” and win the Buy Box. Surprisingly, I find

that 85% of sellers cannot win the Buy Box, even if they drastically lower their prices, due to the

impact of other attributes that they cannot directly control, like their customer feedback scores. In the

small fraction of cases where a seller could potentially win the Buy Box by lowering their price, the

average price drop necessary to win is 34%, which is likely to erase the seller’s profit margin, or even

cause them to sell at a loss. Although these results are derived from simulations, they suggest that it

is extremely challenging for new sellers to make a profit offering best-selling products on Amazon

Marketplace.

I also run simulations to investigate how much sellers who are not winning the Buy Box

would need to lower their prices to “change their fate” and win the Buy Box. Surprisingly, I find that

85% of sellers cannot win the Buy Box, even if they drastically lower their prices... Garbage to fix
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the bug the margin in next section.

1.3 Hiring Sites

The internet is fundamentally changing the labor economy. Millions of people use services

such as LinkedIn, Indeed, Monster, and CareerBuilder to find employment [45, 101, 133]. These

online services offer innovative mechanisms for recruiting and organizing employment, often driven

by algorithmic systems that rate, sort, recommend, and match workers and employers.

In theory, many of the mechanisms that cause discrimination in traditional labor markets

(e.g., cognitive biases and network homophily) should be absent in online services. In online contexts,

workers’ demographics may be less clear or even anonymized, while employers and employees

find one another through demographic-agnostic algorithmic searches. For example, on Indeed,

Monster, and CareerBuilder, job seekers create detailed personal profiles and upload resumes, but the

services specifically do not collect demographic information or profile images. This design explicitly

discourages recruiters from basing hiring decisions on demographic factors.

Yet, evidence indicates that inequalities persist in many different online labor contexts.

Scholars have uncovered cases of unequal opportunities presented to women in online ads [63];

biases in social feedback for gig-economy workers based on gender and race [90]; and discrimination

against online customers based on socioeconomics [179]. Similarly, the Illinois Attorney General sent

letters to six major hiring websites after users complained about age discrimination [121]. Although

there are policies and best practices that employers may adopt to address biases in traditional hiring

contexts, mitigating (and even detecting) these issues in online, algorithmically-driven contexts

remains an open challenge [28, 107].

In this study, I examine the candidate ranking algorithms used by three of the largest

hiring websites: Indeed, Monster, and CareerBuilder. My goal is to investigate gender-based

inequalities in the ranking algorithms used by major resume search engines, which allows recruiters

to proactively search for candidates based on keywords and filters. Like any search engine, these

tools algorithmically rank candidates, with those at the top being more likely to be seen and clicked

on by recruiters [61, 158]. However, if the ranking algorithm takes demographic features into

account (explicitly or inadvertently), it may produced rankings that systematically disadvantage some

candidates.

I organize my study along four questions:
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1. Do the ranking algorithms used by major resume search engines exhibit ranking bias with

respect to candidate’s genders? I define ranking bias as statistically significant differences in

rank when comparing candidates with different genders.1

2. Are the ranking algorithms fair? I define fairness as assigning adjacent ranks to candidates

that have the same observable features (e.g., experience and education), regardless of gender.

In other words, does rank in search results depend on gender, even when controlling for other

variables?

3. If rank does depend on gender, does this mean that the ranking algorithms are using gender as

a feature, or are other features serving as proxies for gender?

4. Can ranking bias and unfairness in search results be addressed using different ranking algo-

rithms? If so, what are the tradeoffs when choosing to enforce one property or the other?

To answer these questions, I collect data from Indeed, Monster, and CareerBuilder. I ran

queries on each site’s resume search engine for 35 job titles across 20 American cities between

May and October 2016, and recorded the search results. My final dataset includes over 855K job

candidates. Intuitively, my data corresponds to a recruiter’s perspective of these sites, including the

candidates’ profiles and their rank in the search result lists.

Unfortunately, my analysis shows that the candidate ranking algorithms used by the three

hiring websites exhibit both ranking bias and unfairness. To mitigate the gender effect, I propose two

alternative ranking methods that each obey a different fairness constraint.

Ranking Bias and Unfairness. Using the Mann-Whitney U test, I find that 18.2%,

13.5%, and 18.2% job title/city pairs on Indeed, Monster, and CareerBuilder (respectively) exhibit

significant ranking bias (p < 0.05 or smaller in all cases). For some job titles, there is significant

ranking bias in 40% – 60% of the cities. In almost all cases, female candidates appear at lower ranks

than male candidates.

Using a Mixed Linear Regression with log2(rank) as the dependent variable and all other

visible candidate features as independent variables, I find that the gender effect is statistically

significant on all three websites (p < 0.05 or smaller in all cases). The sign of the gender coefficient

indicates that female candidates appear at lower ranks2 than male candidates, even when controlling

for all visible candidate features (e.g., current job title, experience, education, and skills).
1Note that the term bias here is not the difference between the expected value of an estimator and the true value of the

estimand; rather, I use the term to describe that the difference in rank between two groups is statistically significant.
2In this thesis, I use the terms “top” and “high” to refer to desirable ranks in search results (e.g., rank 1). This is the

standard terminology used in Information Retrieval literature [61, 104].
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Based on controlled tests using self-crafted resumes, I show that the ranking algorithms

on these sites do not explicitly use gender as a feature; however, they do extract hidden features

directly from candidates’ resumes that are not visible in the search results. I hypothesize that one (or

more) of these hidden features is a proxy for gender, and since I cannot control for it, this leads to the

significant gender coefficient that I observe in my regressions.

Gender Effect Mitigation. I propose two alternative ranking methods that each obey

a different fairness constraint. The unbiased ranker produces search results that do not exhibit

ranking bias with respect to gender. In contrast, the neutral ranker increases the rank of females to

compensate for the negative gender coefficient I observe in my regression models (while leaving the

weight of all other features unchanged). I compare the original search results produced by Indeed,

Monster, and CareerBuilder to search results that have been re-ranked according to my two methods,

and show that my methods successfully remove bias and unfairness (respectively). However, I also

show that my two methods lead to opposite outcomes with respect to the median rank of female

candidates, the gap in rank between men and women, and the uniformity of feature values in search

results.

1.4 Outline

The remainder of this thesis is organized as follows. §2 covers the related work that inspire

my research. §3 presents my study of Uber’s surge pricing algorithm. In §4, I explore the Buy Box

and dynamic pricing on Amazon marketplaces. I examine the gender effect on ranking on hiring

websites in §5. Finally, I conclude with findings and implications of my thesis in §6.
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Chapter 2

Related Work

In this section, I present the related work that inspired and informed my thesis. I start with

studies covering price competition and issues on online marketplaces. Then, I briefly cover studies on

hiring discrimination in labor markets. Next, I present work that improves privacy and transparency

on the web. Finally, I introduce algorithmic auditing and studies that applies this methodology.

2.1 Online Marketplaces

Online marketplaces, compared to traditional marketplaces, offer a platform capable of

hosting an enormous number of sellers, products, customers, and transactions. The interplay of

multiple parties, e.g., sellers vs. buyers and humans vs. pricing bots, paints a complex picture of

price competition in this ecosystem. At the same time, the complexities of operating online bring

fraud and privacy issues to online marketplaces.

2.1.1 Price Competition

With easy access to the internet and computation technologies, e-commerce sellers are

able to adjust their prices automatically by setting algorithmic rules against other competitors in the

market. These sellers are playing a pricing game in the marketplace. [22, 32, 139] model a pricing

game played by the sellers and study the properties of its equilibria as a function of the dependencies

among goods/services offered by the sellers. [21, 49, 50] extend the traditional price competition

model proposed by Bertrand [32] to combinatorial settings. Babaioff et al. model price competition

in marketplaces where equilibria rarely exist [23].
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Researchers have also empirically analyzed price competition on online marketplaces.

Chevalier et al. measure 18,000 books to estimate price indices and the amount of price competition

at Amazon.com and BarnesandNoble.com [55]. In another Amazon.com study [193], Zhu et al.

analyze the competition between Amazon.com and the third-party sellers on its platform. In the

study, the authors find that Amazon’s entry to compete with third-party sellers is positively correlated

with the popularity and customer ratings of third-party sellers’ products. In addition, they also show

that Amazon’s competition reduces the shipping costs of affected products, and hence increases their

demand. However, Amazon’s entry into competition also depresses the business growth for small

third-party sellers. Lastly, [25] analyzes the impact of “snipers”, who place bids in the final seconds

in an online auction, on user behavior on eBay.

2.1.2 Fraud and Privacy

Online marketplaces bring customers convenience, low prices, and a vast inventory of prod-

ucts. However, the anonymous nature of online marketplaces makes them vulnerable to manipulation

and fraud conducted by unscrupulous parties. [118, 137, 147] study insincere sellers that generate

opinion spam and artificial ratings to manipulate the reputation systems on online marketplace. Xu et

al. conduct an empirical analysis on the Seller Reputation Escalation (SRE) ecosystem that provides a

shill-purchasing service for escalating business’ reputations on the Taobao online marketplace [190].

Several empirical studies have also shown that online marketplaces can cause privacy

issues for consumers. Minkus et al. reveal that attackers can correlate the highly sensitive user

information from public profiles in eBay’s feedback system with their social network profiles on

Facebook [131]. Similarly, [153] discovers leakage of personal information and detailed shopping

habits from online merchants to payment providers (e.g., PayPal).

2.2 Hiring Discrimination

Labor discrimination is a long standing, troubling aspect of society. Discrimination may

impact workers’ wages or opportunities for advancement, but in this thesis I specifically focus on

hiring discrimination, which occurs when discrimination impacts the candidates that are selected to

fill open positions. Recent literature demonstrates that hiring discrimination still impacts the modern

job market [149], and may be based on gender, race [30,182], sexual orientation [188], disability [77],

or age [30, 73].
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Kuhn et al. used data from a Chinese online job board to examine explicit gender discrimi-

nation in hiring [113]. Gender discrimination in hiring is not illegal in China, which gave the authors

a window into firm’s behavior in an unconstrained market. In contrast, gender discrimination is

illegal in the U. S., making it more difficult to study because individuals and firms attempt to hide

this behavior.

One of the key tools used to study hiring discrimination in countries where the practice is

illegal is the audit or correspondence study. In this methodology, the researchers probe the hiring

practices of a target by submitting carefully crafted resumes, or by sending actual human participants

in for interviews [30, 33, 157]. By carefully constructing the treatments to only differ by specific

demographic features (e.g., gender), the researchers can measure the degree to which these variables

correlate with hiring outcomes [148].

Scholars and regulators have begun to focus on the ways that big data and algorithms

can create hiring discrimination. Pauline T. Kim thoroughly catalogs how data-driven systems that

evaluate job seekers may introduce new forms of bias against members of protected classes [107].

One potential driver of algorithmic bias identified by Kim and others [28] occurs when subpopulations

are not well-represented in the data used to train an algorithm. This issue is not hypothetical: in

2017, the Illinois Attorney General launched an investigation against six major online job boards

(including Indeed, Monster, and CareerBuilder) after receiving complaints that the design of these

websites excluded older job seekers, thus fostering age discrimination [121].

2.2.1 The Importance of Rank

In §5, I examine three hiring websites that present job seekers in ranked lists in response

to queries from recruiters. Ranked lists are a common user interface design pattern across many

Information Retrieval (i.e., search) systems. Numerous empirical studies have shown that the items

at the top of ranked lists are more likely to be clicked by users [61, 158], and thus there is an entire

Search Engine Optimization industry that aims to increase their clients’ rank within critical systems

like Google Search [124, 142, 186, 187].

Presenting human job seekers in a ranked list can be framed as a form of status differentia-

tion, with top ranks conferring higher status. In offline contexts, status differentiation is known to be

a primary cause of social inequality. For example, studies have shown that men are perceived to have

higher status than women [38, 97, 136, 159, 184], while white skinned people have higher status than

darker skinned people [59, 173].
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With respect to online job search, if a ranking algorithm systematically elevates candidates

with specific demographic attributes, this may recreate real-world social inequality in an online

context. Unfortunately, examples of this are emerging: Hannák et al. found negative correlations

between race and rank on the gig-economy website TaskRabbit, even after controlling for all other

worker-related features [90].

Another frame for considering the importance of ranking algorithms in hiring is that of

automation bias. Automation bias is a cognitive bias where humans tend to believe the output of

an automated decision aid even when the output is contradicted by other available evidence [62].

In my context, I can view the ranking algorithm on a hiring website as a decision aid designed to

guide a recruiter towards relevant candidates. Hiring websites promote the sophistication of their

search tools [42,134], and access to them often costs money [46,135], which may increase recruiters’

perception that the top candidates returned by these tools are truly “the best” on the market. Naïve

acceptance of search results may dissuade recruiters from investigating and contacting lower-ranked,

but possibly equally qualified candidates.

2.3 Auditing Algorithms

As sophisticated algorithms automate more facets of daily life, researchers have begun to

investigate whether these opaque algorithms may (inadvertently) cause harm to users. The process of

examining a black-box system has become known as an algorithm audit, as the methodology draws

inspiration from classic audit studies [162]. There is a growing body of literature that uses algorithm

audits to understand the systems that impact people’s daily lives.

2.3.1 Filter Bubbles

Personalization is a technique that tailors content per individual based on the user’s

personal information [151]. While personalization may provide more relevant content to end users,

the technique has also drawn criticism because it may hide information with different viewpoints,

and isolate users into individual cultural or ideological bubbles [37, 71, 94, 98]. This controversial

phenomenon is known as the Filter Bubble of personalization [150].

Researchers are studying the prevalence and impact of Filter Bubbles on search engines.

Hannak et al. develop a methodology to measure the personalization in web search results and

identify the features that caused the personalization [88]. Kliman-Silver et al. explore the impact of
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location-based personalization on Google Search results [110]. To detect and catalog personalization

of international borders in online maps, Soeller et al. build a system to monitor controversial

international borders on Google and Bing [169].

Personalization is also present on online social networks. For example, Facebook’s News

Feed algorithm decides the posts each user sees when using the service [24,145]. To understand users’

perceptions of the algorithmic curation in Facebook’s News Feed, Rader et al. analyze open-ended

survey responses from users and identify several patterns of beliefs and their implications [155].

Eslami et al. build a tool to present Facebook users with algorithmically curated and uncurated

news feeds, and use the tool to study users’ perceptions about the algorithm [72]. To measure users’

exposure to cross-cutting content, Bakshy et al. examine 10.1 million U.S. Facebook users and their

interactions with socially shared news, and argue that homophily has a stronger effect than the News

Feed curation algorithm on limiting the visibility of political messages on Facebook [27].

2.3.2 Price Discrimination

Automated algorithms are becoming increasingly ubiquitous on online marketplaces.

However, the impact of these algorithms on users are often poorly understood, and are not always

positive for users. Price discrimination, algorithmically setting the product price for a user based the

user’s personal information, has received extensive scrutiny by academic researchers. Mikians et al.

empirically demonstrate the existence of both price and search discrimination by tracking 200 online

vendors for 20 days, and uncover the information vectors used to facilitate the discrimination [129].

From the same research group, Mikians et al. conduct a follow-up study by implementing a browser

extension to crowd-source the data collection from real users, and find the discrepancy in product

prices can reach 200% [130]. Similarly, in [58], Clemons et al. examine the presence of price

dispersion and product differentiation on the airline ticket offerings from online travel agents, and

find that tickets prices vary by as much as 18% across agents. Lastly, Hannak et al. develop a

methodology for accurately measuring when price steering and discrimination occur, implement it for

a variety of e-commerce web sites, and investigate the effect of user behaviors on personalization [89].

2.3.3 Gender and Racial Discrimination

Gender and racial discrimination is extensively studied in real-world society [48, 154, 164,

181]. Unfortunately, these issues are also present on online services. Latanya Sweeney investigated

racial discrimination on Google Adsense, and discovered that the advertising system was more likely
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to deliver criminal background check advertisements when searching for African American sounding

names than white names [176]. Similarly, Datta et al. developed an automated tool that explored how

user behaviors, Google’s ads, and Ad Preferences interact, and found that females were shown fewer

advertisements for high-paying jobs [64]. Two studies focused on eBay marketplace uncovered that

female and African American sellers sold fewer products, and at lower prices, than equivalent male

caucasian sellers [20, 112].

In the sharing economy, Edelman et al. found that rental applications on Airbnb from

guests with distinctively African American names were 16% less likely to be accepted relative to

identical guests with distinctively white names [69]. Similar unequal treatments have been observed

on Uber and Lyft. Ge et al. found that ride requests from passengers with African American sounding

names were more likely to be canceled, while female passenger were more likely to have longer,

more expensive rides [75]. Finally, on online freelance marketplaces like TaskRabbit, researchers

have found that workers accept fewer job requests from disadvantaged or suburban areas [180], and

that gender and race are significantly correlated with worker evaluations, which could harm the

employment opportunities afforded to the workers [91].

A recent study by the hiring website HIRED analyzed the wage gap among employees from

different demographic backgrounds in the tech industry [109]. Unfortunately, the analysis revealed

that female, non-white, and LGBTQ employees face extensive salary disadvantages compared to

white men.

2.3.4 Privacy and Transparency

Researchers have begun to develop tools to make online data collection by companies

more transparent, and help preserve user privacy. To increase transparency, Lécuyer et al. develop a

scalable personal data tracking system that monitors the user’s data transfers and detects possible

leaks of sensitive information [116]. Roesner et al. analyze the first- and third-party tracking of

user information online and evaluate several defense mechanisms against web tracking [160]. In

a recent study, Ren et al. implement a cross-platform system that reveals personally identifiable

information (PII) leaks, and gives users control over them without requiring any special privileges

or custom OSes [156]. [29, 83] measure the information flows in online advertising networks and

provide insights to build systems offering more user control and transparency.
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Chapter 3

Uber’s Surge Pricing Algorithm

There are three high-level goals of this study. First, I aim to understand the overall dynamics

of the Uber service. Second, I want to determine how Uber calculates surge multipliers. Third, I want

to understand whether surge pricing is effective at mitigating supply/demand imbalances.

To answer these questions, I begin in §3.1 by introducing Uber, its client-side and driver-

side app, and surge pricing. In §3.2, I present my approach to collect data from Uber, and the

methodology to measure key variables such as supply, demand, surge multiplier, etc., to conduct my

research. I also validate my data collection and measurement methodology in this section. In §3.3, I

characterize temporal and spatial dynamics of supply and demand on Uber, and analyze Uber’s surge

pricing algorithm in detail in §3.4. Based on these findings, I present a strategy for avoiding surge

prices in §3.5. Finally, I summarize key findings in §3.6.

3.1 Background

In this section, I briefly introduce Uber, surge pricing, and technical details about the Uber

service.

Uber. Founded in 2009, Uber is a “ride sharing” service that connects people who need

transportation with a crowd-sourced pool of drivers. Unlike typical transportation providers, Uber

does not own any vehicles or directly hire drivers. Instead, Uber drivers are independent contractors

(known as “partners”) who use their own vehicles and set their own schedules. As of May 2015,

Uber is available in 200 cities in 57 countries1, and claims to have 160K active drivers in the U.S.

1https://www.uber.com/cities
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alone [86].

Uber provides a platform that connects passengers to drivers in real-time. Drivers use the

Uber Partner app on their smartphone to indicate their willingness to accept fares. Passengers use

the Uber Client app to determine the availability of rides and get estimated prices. Uber’s system

routes passenger requests to the nearest driver, and automatically charges passengers’ credit cards at

the conclusion of each trip. Uber retains 20% of each fare and pays the rest to drivers.

Depending on location, Uber offers a variety of different services. UberX and UberXL are

basic sedans and SUVs that compete with traditional taxis, while UberBLACK and UberSUV are

luxury vehicles that compete with limousines. UberFAMILY is a subset of UberX and UberXL cars

equipped with car seats, while UberWAV refers to wheelchair accessible vehicles. UberT allows

users to request traditional taxis from within the Uber app. UberPOOL allows passengers to save

money via carpooling, i.e., Uber will assign multiple passengers to each vehicle. UberRUSH is a

delivery service where Uber drivers agree to courier packages on behalf of customers.

Surge Pricing. Uber’s fare calculation changes depending on local transportation laws.

It typically incorporates a minimum base fare, cost per mile, cost per minute, and fees, tolls, and

taxes. The base fare and distance/time charges vary depending on the type of vehicle (e.g., UberX vs.

UberBLACK).

In 2012, Uber introduced a dynamic component to pricing known as the surge multiplier.

As the name suggests, fare prices are multiplied by the surge multiplier; typically the multiplier is 1,

but during times of high demand it increases. Uber has stated that there are two goals of this system:

first, higher profits may increase supply by incentivizing drivers to come online. Second, higher

prices may reduce demand by discouraging price-elastic customers.

Little is known about Uber’s surge price algorithm, or whether the system as a whole is

successful at addressing supply/demand imbalances. As shown in Figure 3.1, surge multipliers vary

based on location, and recent measurements suggest that Uber updates the multipliers every 3-5

minutes [67]. Uber has a patent pending on the surge price algorithm, which states that features such

as car supply, passenger demand, weather, and road traffic may be used in the calculation [141].

Passenger’s Perspective. Uber’s apps provide different information to passengers

and drivers. The Client app displays a map with the eight closest cars to the user (based on the

smartphone’s geolocation), and the Estimated Wait Time (EWT) for a car. The app provides separate

eight-car inventories and EWTs for each type of Uber. Users are not shown the surge multiplier until

they attempt to request a car (and only if it is >1). Although the app initially assumes that the user’s
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Figure 3.1: Screenshot of the Uber Partner app.

current location is their pickup point, the user may move the map to choose a different pickup point.

This new location may have a different EWT and/or surge multiplier than the original location.

Driver’s Perspective. In contrast to the Client app, the Partner app displays very

different information to drivers. As shown in Figure 3.1, the centerpiece of the Partner app is a map

with colored polygons indicating areas of surge. Unlike the Client app, the locations of other cars

are not shown. In theory, this map allows drivers to locate areas of high demand where they can

earn more money. In practice, drivers often use the Partner and Client apps concurrently, to see the

exact locations of competing drivers [19]. The Partner app’s map also suggests that Uber calculates

discreet surge multipliers for different geographic areas. I empirically derive these surge areas in

§ 3.4.

3.2 Methodology

In this section, I discuss my approach for collecting data from Uber. I begin by motivating

San Francisco (SF) and Manhattan as the regions for my study. Next, I discuss my methodology for

collecting data from the Uber Client app, and how I calibrated my measurement apparatus. Finally, I

validate my methodology using simulations driven by ground-truth data on all taxi rides in NYC in
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2013.

3.2.1 Selecting Locations

In this study, I focus on the dynamics of Uber in SF and Manhattan. As I discuss in §3.2.2

and §3.2.3, there are practical issues that force me to constrain my data collection to relatively small

geographic regions. Furthermore, not all regions are viable or interesting: Uber does not offer service

everywhere, and many places will have few cars and passengers (i.e., rural areas).

I chose to focus on SF and Manhattan for four reasons. First, San Francisco and New

York City have the 2nd and 3rd largest populations of Uber drivers in the U.S. (Los Angeles has

the largest population) [86]. Second, SF was Uber’s launch city, and recent measurements suggest

that it accounted for 71% of all “taxi” rides in the city in 2014 (the highest percentage of any U.S.

city; Uber accounted for 29% of all rides in NYC during 2014) [174]. Third, SF and NYC are very

different cities in terms of culture and access to public transportation, which may lead to interesting

differences in the dynamics of Uber.

Fourth and finally, Manhattan is a useful location to measure Uber because there also exists

a publicly available dataset of all taxi rides in NYC for 2013 [132]. I leverage this data in §3.2.5 to

validate the accuracy of my Uber measurement methodology.

3.2.2 The Uber API

Now that I have chosen locations, the next step is to collect data from Uber in these two

areas. Like many modern web services, Uber provides an HTTP-based API for third-party developers

to retrieve information about the state of the service. In my case, the estimates/price and

estimates/time endpoints are most useful. The former takes longitude and latitude as input,

and returns a JSON-encoded list of price estimates (including surge multipliers) for all car types

available at the given location. The latter is similar, except it returns EWTs. Uber imposes a rate

limit of 1,000 API requests per hour per user account.

While data from the Uber API is useful, it is not sufficient for this study, since it does not

include information about car supply or passenger demand. Thus, I only rely on API data for specific

experiments in §3.4.
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3.2.3 Collecting Data from the Uber App

To overcome the shortcomings of the Uber API, I leverage the Uber Client app. After a

user opens the app and authenticates with Uber, the app sends pingClient messages to Uber’s

server every 5 seconds. Each ping includes the user’s geolocation, and the server responds with a

JSON-encoded list of information about all available car types at the user’s location. For each car

type, the nearest eight cars, EWT, and surge multiplier are given. Each car is represented by a unique

ID, its current geolocation, and a path vector that traces the recent movements of the car.

To gather this data, I wrote a script that emulates the exact behavior of the Client app. My

script logs-in to Uber, sends pingClient messages every 5 seconds, and records the responses.

By controlling the latitude and longitude sent by the script, I can collect data from arbitrary locations.

I created 43 Uber accounts (each account requires a credit card to create), giving me the ability to

“blanket” a small geographic area with measurement points. To simplify my discussion, I refer to

these 43 measurement points as “clients”.

While I was collecting data I never encountered rate limits or had my accounts banned.

This indicates that I very likely was not detected by Uber. Although it is possible that Uber detected

my clients and fed them false data, it is much more plausible that Uber would have simply banned

my clients if they were concerned about my measurements.

Measuring Supply and Demand. Using the data returned by pingClient, I can

approximate the aggregate supply and demand within my measurement region. To measure supply, I

can simply count the total number of unique cars observed across all measurement points; each of

these cars represents a driver who is looking to provide a ride. To measure demand, I can measure

the aggregate number of cars that go offline (disappear) between responses; one of the reasons a car

may go offline is because it picked up a rider (I discuss other potential reasons, and how I handle

them, below).

Limitations. Although pingClient returns more information than the Uber API,

there are still four limitations that I must address. First, clients only receive information about the

eight closest cars. Thus, to measure the overall supply of vehicles in a geographic area, I must

position the 43 clients such that they completely cover the area. This situation is further complicated

by the fact that each client’s visibility changes as the density of Uber cars fluctuates (e.g., cars are

dense during rush hour but sparse at 4am). In §3.2.4, I perform calibration experiments to determine

the appropriate distance to space my clients.

Second, the demand I am able to estimate from my data is fulfilled demand, i.e., the number
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of cars that pick up passengers. Uber does not provide public data about quantity demanded, i.e., the

number of passengers that request rides. The difference between fulfilled and quantity demand is

that some passengers may request a ride but not receive one due to supply shortages. Thus, in this

study, when I refer to “demand”, I am talking about fulfilled demand.

Third, my measurement of demand may overestimate the true demand because there are

three reasons why a car might disappear between one response and the next: 1) the car drives

outside my measurement area, 2) the driver accepts a ride request, or 3) the driver goes offline. I can

disambiguate case 1 since the Client data includes the path vector for each car. Although I cannot

disambiguate cases 2 and 3, I can still use car disappearances as an upper-bound on the fulfilled

demand within the measurement area.

Fourth, data from the Client app does not allow me to track individual Uber drivers over

time. Although each car is assigned a unique ID, these IDs are randomized each time a car comes

online. Unfortunately, there is no way to overcome this limitation, and thus none of my experiments

rely on tracking individual drivers.

Phantom Cars. Several press articles claim that Uber’s Client app does not display data

about actual Uber cars; instead, they claim that the cars are “phantoms” designed to give customers

the illusion of supply [161]. Uber has publicly disputed these claims [57, 189], explaining that the

data shown in the Client app is as accurate as possible, given practical constraints like the accuracy

of smartphone GPS measurements. Furthermore, Uber stated that car locations may be slightly

perturbed to protect drivers’ safety. I have not observed any evidence in my data to suggest that the

cars are phantoms; on the contrary, the cars in my data exhibit all the hallmarks of human activity,

such as diurnal activity patterns (see §3.3). If Uber does present phantom cars, it is likely that they

only do so in rural areas with low supply, rather than in major cities like Manhattan and SF.

Uber Driver App. As shown in Figure 3.1, the Driver app also includes useful

information (i.e., the surge map). However, only registered Uber drivers may log in to the Driver app.

I attempted to sign-up as an Uber driver, but unfortunately Uber requires that drivers sign a document

prohibiting data-collection from the Driver app. I opted not to sign this agreement. Instead, in §3.4, I

reconstruct the surge map based on data from the Uber API.

Ethics. While conducting this study, I was careful to collect data in an ethical manner.

First, I do not collect any personal information about any Uber users or drivers. I discussed my

study with the Chair of my University’s Institutional Review Board (IRB); she evaluated it as not

being subject to IRB review because I did not collect personal information or impact any user’s
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environment.

Second, I minimize my impact on Uber users and drivers. Before I began my data collection,

I conducted an experiment to see if my measurements would impact Uber users by artificially raising

the surge price. Fully discussed below, my results strongly suggests that my measurements have no

impact on the surge multiplier. Moreover, at no point in this study did I actually request rides from

any Uber driver, and drivers are not able to observe my measurement clients in the Driver app.

Third, I minimized my impact on Uber itself by collecting just the data I need to perform

the study. The overall effect of my measurements was the same as 43 extra users running the Uber

Client app. Given that Uber claims millions of users worldwide, I believe this is a worthwhile tradeoff

in order to conduct this research.

Other Ride-Sharing Services. Although I attempted to collect data from other ride

sharing services, these efforts were not successful. Lyft implements “prime time” pricing, but this

data is only available after a user requests a ride. Thus, there was no ethical way for me to collect

this data. Sidecar does not implement surge pricing; instead, drivers set their own rates based on time

and distance. These additional variables make it difficult to systematically collect price information.

3.2.4 Calibration

The next step in my methodology is determining the locations for my 43 clients in SF and

Manhattan. This step is crucial; on one hand, if I distribute the clients sparsely, I may only observe

a subset of cars and thus underestimate supply and demand (recall that pingClient responses

from Uber only contain the closest eight cars to each client). On the other hand, if the clients are too

close together, the cars they observe will overlap, and I will fail to observe supply and demand over a

sufficiently large geographic area.

To determine the appropriate placement of my 43 clients, I conducted a series of experi-

ments between December 2013 and February 2014. In my first experiment, I chose a random location

in Manhattan and placed all 43 clients there for one hour. I then repeated this test over several

days with different random locations around Manhattan and SF. The results of these experiments

reveal two important details about Uber: first, during each test, all 43 clients observed exactly the

same vehicles, surge multipliers, and EWTs. This strongly suggests that the data received from

pingClient is deterministic.

Second, when the clients were placed in areas where I would not expect to see surge (e.g.,

residential neighborhoods at 4 a.m.), all 43 clients recorded surge multipliers of 1 for the entire hour.
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Figure 3.2: Visibility radius of clients in two cities.

This strongly suggests that my measurement methodology does not induce surges. As I show in

Figure 3.8, fulfilled demand in midtown Manhattan peaks around 100 rides per hour, so 43 clients is

a significant enough number that I would expect surge to increase if the algorithm took “views” into

account.

The goal of my next experiment is to measure the visibility radius of clients. Intuitively,

this is the distance from a client to the furthest of the eight cars returned by pingClient. Once I

know the visibility radius in SF and Manhattan, I can determine the placement of my 43 clients.

To calculate the visibility radius, I conduct the following experiment. I 1) place 4 clients,

denoted as C = {c1, c2, c3, c4}, at the same geolocation; 2) each of the clients “walks” 20 meters

Northeast, Northwest, Southeast and Southwest (respectively) every 5 seconds; 3) the experiment

halts when |
T

c

V
c

| = 0, where V
ci is the set of cars observed by client c

i

; 4) record the distance

D
c

from each c 2 C to the starting point. Given this information, I calculate the visibility radius r

(consider a 45�-45�-90� triangle where r is the leg and D
c

is the hypotenuse) as:
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2
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Figure 3.2 shows the measured radii in meters when the clients were placed in downtown

SF and midtown Manhattan. I chose these specific locations because they are the “hearts” of these

cities, and thus they are likely to have the highest densities of Uber cars. As expected, the visibility

radius changes throughout the day, with the most obvious difference being night/day in SF. There are

also differences between the cities: the average radius is 247 ± 2.6 meters in Manhattan, versus 387

± 6.8 meters in SF.2

In the end, I chose 200 meters as the radius for my data collection in midtown Manhattan,

and 350 meters in downtown SF. These values represent a conscientious trade-off between obtaining

2Throughout this study, I present the 95% confidence interval (CI) of the mean value.
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complete coverage of supply/demand and covering a large overall geographic area. Figures 3.3a

and 3.3b depict the exact positions where I placed my clients in SF and Manhattan.3

3.2.5 Validation

My final step is to validate my measurement methodology. The fundamental challenge is

that I do not have ground-truth information about supply and demand on Uber; I attempt to mitigate

this through careful placement of my clients, but the key challenge is having confidence that I will

observe the vast majority of cars.

To address this issue, I constructed an Uber simulator powered by ground-truth data on

NYC taxis [132]. The NYC taxi data includes timestamped, geolocated pickup and dropoff points

for all taxi rides in NYC in 2013. Each taxi is assigned a unique ID, so its location can be tracked

over time. My simulator takes the taxi data as input, and plays the rides back in real-time. Since the

taxi data only includes pickup and dropoff points, the simulator “drives” each taxi in a straight-line

from point-to-point. I assume that a taxi has gone “offline” if it is idle for more than 3 hours (this

filter only removes 5% of taxi sessions in the data).

I built an API in my simulator that offers the same functionality as Uber’s pingClient:

it returns the eight closest taxis to a given geolocation. Just as with Uber, the ID for each taxi is

randomized each time it becomes available. Given this API, I used my methodology from §3.2.3

and §3.2.4 to measure the supply and demand of taxis over time. If the measured values from the

simulator’s API are similar to the ground-truth values, I can confidently say that my methodology

will also collect accurate data from Uber.

Calibration. To make my simulation fair, I calibrated it by using four taxi clients to

determine the visibility radius for taxis in midtown NYC (see §3.2.4). Taxis are much denser than

(a) Uber in downtown SF. (b) Uber in midtown Manhattan. (c) Taxis in midtown Manhattan.

Figure 3.3: Locations of my Uber and taxi measurement points in SF and Manhattan.

3All map images used in this thesis are c�2015 Google.
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Figure 3.4: Measured and ground-truth supply (left) and demand (right) of taxis in midtown Manhat-

tan.

Ubers in this area, so r = 100 meters is commensurately smaller. Figure 3.3c shows the locations of

my 172 taxi clients; compared to Uber clients, it takes 300% more taxi clients to cover midtown.

Results. Using my taxi clients, I measured the supply and demand of taxis in the

simulator between April 4–11, 2013. I chose these dates because they correspond to the same month

and week of my Uber measurements (except in 2013 versus 2015, see §3.3).

As I discuss in §3.2.3, neither Uber nor my simulator return direct information about

demand. Instead, I assume that cars that 1) disappear from the measured data, and 2) were not driving

near the outer edge of the measurement polygon were booked by a passenger.4 I refer to these events

as deaths.

Figure 3.4 plots the measured and ground-truth taxi supply and demand per 5-minute

interval. The two lines are almost indistinguishable since my taxi clients capture 97% of cars and

95% of deaths. The results provide strong evidence that my measurement methodology captures

most of Uber’s supply and demand.

4Restriction (2) is conservative: cars near the edge of the measurement area may disappear because they were booked,

or because they drove outside the measurement polygon.
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3.3 Analysis

In this section, I analyze supply, demand, and wait times on Uber. I begin by briefly

introducing my datasets and how I cleaned them. Next, I examine how the dynamics of Uber change

over time and spatially across cities. I focus the majority of my analysis on UberX, since (as I will

show) they are the most common type of Uber by a large margin. I defer detailed analysis of surge

multipliers and the surge pricing algorithm to §3.4.

3.3.1 Data Collection and Cleaning

For this study, I collected data from 43 clients placed in midtown Manhattan and downtown

SF between April 3rd–17th (391 GB of data containing 9.3M samples) and April 18th–May 2nd

(605 GB of data, 9.4M samples), respectively. Data was collected using the Uber client methodology

described in §3.2.3. The locations of my clients are shown in Figures 3.3a and 3.3b. I also collected

more limited datasets from the Uber API, as well as client data between December 27th, 2014–March

1st, 2015; I use this data in §3.4.

Before proceeding with analysis, my data must be cleaned to remove outliers. Figure 3.5

shows the lifespan of UberX cars in my dataset, measured as the time delta during which I observe a

car’s ID. Problematically, ⇠50% of UberXs have a lifespan of zero, i.e., I only observe them in a

single pingClient response. I refer to these cars as being short-lived, and observe similar trends

for other types of Ubers.

The obvious question is: what is the cause of short-lived cars? Fortunately, I discovered

that short-lived cars are an easily understood artifact of my measurement methodology. I examined

the GPS coordinates of all short-lived cars, and found that 80% of them are outsiders: they are > r

meters away from the nearest client in my measurement polygon. Figure 3.6 plots the distances of

short-lived insiders (those within the measurement polygon), and shows that 100% of them are < r

meters from the polygon boundary.

These results reveal that short-lived cars are due to the fact that pingClient only returns

information about the eight nearest cars. Cars that are outside the measurement polygon, or < r

meters from its edge, may only be observed by a single client. These cars may get pushed out of

pingClient responses by closer vehicles, or the car may only briefly be near my measurement

area. In contrast, cars well-within the boundaries can potentially be observed by many clients, even

as they drive around. Thus, I can safely filter short-lived cars from my dataset, and focus in the

remainder of the thesis only on cars that are driving within the bounds of my measurement area.
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Car Lifespan. Figure 3.7 shows the lifespans of Ubers after removing short-lived cars.

I observe similar trends in Manhattan and SF: ⇠90% of low-priced Ubers (X, XL, FAMILY, and

POOL) live for <10 minutes, while ⇠65% of high-priced Ubers (BLACK and SUV) live for <10

minutes. There are two possible reasons for this observation: first, demand for low-priced Ubers

may be higher than for expensive Ubers. Second, as I show in §3.3.2, low-priced Ubers greatly

outnumber high-priced Ubers, so there may simply be more churn amongst the former due to their

greater prevalence.

3.3.2 Dynamics Over Time

Next, I examine how supply, demand, surge multiplier, and EWT vary over time. I calculate

supply by counting all the unique car IDs observed by my 43 clients during each 5-minute interval.

Demand is the number of cars that disappear during each 5-minute interval (excluding cars that drive

outside the measurement area). Surge multiplier and EWT are averaged across each 5-minute interval

and all 43 clients. I explain why I chose 5-minute intervals in §3.4.

Note that my measurements for supply and demand are approximations. As shown in

§3.2.5, my methodology may miss some cars, leading me to slightly underestimate supply. Similarly,

I cannot disambiguate cars that pickup a passenger from cars that simply go offline. Thus, my

demand numbers are an upper-bound. Finally, a driver that repeatedly goes online and offline during

a 5-minute interval will appear as multiple unique cars to me, since cars are assigned a fresh ID each

time they come online.

Unsurprisingly, Figure 3.8 shows that Uber exhibits regular daily trends: all four quantities

peak during the day and decline at night. I also observe that supply, demand, and EWT have local
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Figure 3.8: Supply, demand, surge multiplier, and EWT over time for midtown Manhattan and

downtown SF. Surge multiplier and estimated wait time (EWT) are only shown for UberX. Diurnal

patterns are observed in supply and demand, but the characteristics of the surge multiplier show less

predictability.

peaks during morning and afternoon rush hour.5 Rush hour peaks are less prominent for surge pricing,

and I show in §3.4 that surge pricing is extremely noisy.

Both cities exhibit the same rank ordering of Uber types. UberXs are most prevalent,

followed by UberBLACK, UberSUV, and UberXL. Both cities also have other types of Ubers (e.g.,

UberRUSH, UberFAMILY, etc.), however there are only 4 cars of these types on the road on average.

Manhattan does have a significant number of UberT’s, but these are not interesting in my context since

they are not subject to surge pricing (recall that UberT corresponds to an ordinary taxi). Comparing

the NYC taxi data in Figure 3.4 to Figure 3.8 I see that there are an order of magnitude more taxis in

midtown Manhattan than all Ubers combined.

Despite their similarities, Figure 3.8 also reveals differences between Manhattan and SF.

In my measurement region, SF has 58% more Ubers overall than Manhattan, mostly due to the large

amount of UberXs in SF. The relative dearth of Ubers in Manhattan may be due to greater availability

of taxis and better public transport. However, Manhattan has more UberXLs, UberBLACKs, and

UberSUVs than SF.

Manhattan and SF also exhibit different surge pricing characteristics. As shown in Fig-

5Note that the y-axes of supply and demand have different scales.
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ure 3.8, downtown SF surges (i.e., surge >1) more frequently than midtown Manhattan. Surge

multipliers are also tend to be higher in SF: 1.36 ± 1 ⇥ 10

�4 on average versus 1.07 ± 7 ⇥ 10

�5

in Manhattan. In midtown Manhattan, surge tends to increase starting at 3pm through evening rush

hour Monday–Thursday. On the weekends, surge tends to peak between noon and 3pm, likely due

to the influx of tourists. In SF, surge peaks at around 2.0 during morning rush hour (6am–9am)

Monday–Friday. Surge also has a localized peak at 2am every night (but especially on weekends,

reaching up to 3.0), which is “last call” throughout California.

Although Figure 3.8 focuses on surge multipliers of UberX, other types of Ubers exhibit

similar trends. A recent report estimated that Uber accounts for 71% of “taxi” rides in SF versus

29% in NYC [174], so it is possible that this difference in demand explains the differences in surge

characteristics. I defer in-depth discussion of surge pricing to §3.4.

I also observe that Uber offers expedient service in both cities. Average EWT for an UberX

in midtown Manhattan is 3.0 ± 2 ⇥ 10

�4 minutes, and 3.1 ± 2 ⇥ 10

�4 minutes in downtown SF.

In both cities, average EWT never exceeds six minutes. I observe similar trends for other types of

Ubers, although rarer types (e.g., UberFAMILY) typically have slightly longer EWTs.

3.3.3 Spatial Dynamics and EWT

Next, I investigate the spatial dynamics of Uber. Figures 3.9(a) and 3.10(a) show the

average number of unique UberX IDs seen per day by each of my 43 clients.6 Since each square in

these figures is an average, each one has a different confidence interval; the min and max CI for cars

in Manhattan are ± 103 and ± 205 cars, respectively. The min and max CI for cars SF is are ± 170

and ± 250. As one might expect, the distribution of cars in both cities is skewed towards commercial

and tourist locations. In Manhattan, UberXs congregate between Times Square and 5th Avenue. In

SF, UberXs are densest in Russian Hill, Telegraph Hill, the Embarcadero, and the Financial District

(upper-right corner of Figure 3.10(a)), as well as around the University of California, San Francisco

(UCSF, lower-left corner).

In contrast, Figures 3.9(b) and 3.10(b) depict the distribution of EWTs across space. Each

square is the average EWT for UberXs measured every five seconds over two weeks. The min and

max CI for Manhattan are ± 6 ⇥ 10

�6 and ± 2 ⇥ 10

�4 minutes, respectively; the min and max

CI for SF are ± 7⇥ 10

�7 and ± 4⇥ 10

�5. I observe that there is a complex relationship between

6Note that these numbers are strict upper-bounds on the true number of UberX cars, since IDs are randomized each

time a car comes online.
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(a) Avg. Number of Cars (b) Avg. EWT (Minutes)

Figure 3.9: Heatmaps for UberX cars in Manhattan.

(a) Avg. Number of Cars (b) Avg. EWT (Minutes)

Figure 3.10: Heatmaps for UberX cars in SF.

car density and EWT. In some cases, locations with low car density have commensurately higher

EWTs (e.g., the lower-right corners in Figures 3.9(b) and 3.10(b)), suggesting that these areas are

under-supplied. However, I also observe under-supply in several areas with high car density (e.g.,

Times Square and UCSF). This complex interplay between supply and demand supports Uber’s case

for implementing dynamic pricing.

Figure 3.11 presents the overall distribution of EWTs in Manhattan and SF for UberXs.

87% of the time, the wait for an UberX is 4 minutes. However, there are rare instances of severe

supply/demand imbalance when EWT can go as high as 43 minutes. Note that my EWT data comes

from the hearts of Manhattan and SF, and may not be representative for suburban areas.
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3.4 Surge Pricing

Now that I have an understanding of supply and demand on Uber, I turn my attention to

surge pricing. Surge pricing is one of Uber’s most controversial features [128, 144], and thus it

warrants special attention. I begin by analyzing the basic characteristics of surge pricing. Next, I

use my measured data to extrapolate how Uber updates surge prices over time and geography, and

explore the features that Uber uses when calculating surge. Finally, I examine the impact of surge

pricing on car supply and passenger demand.

3.4.1 The Cost of Surges

I begin by answering the questions: how often and how much does it surge on Uber?

Figure 3.12 presents the distribution of surge multipliers for UberXs over two weeks. I observe that

Manhattan and SF have drastically different characteristics: 86% of the time there is no surge in

Manhattan, versus 43% of the time in SF. Furthermore, the maximum surge multiplier I observe in

Manhattan is 2.8, versus 4.1 in SF. In both cities, the surge multiplier is 1.5 during the majority of

surges.

Surge Multiplier

0                    5                    10                  15                  20                  25    Time(m) 

(a)

(b)

1.5
1

1.5
1

Figure 3.14: Examples of surge over time as seen from (a) the API and (b) the Client app. Although

surge is recalculated every 5 minutes in both cases, clients also observe surge jitters for 20-30 seconds

(red arrows).
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The results in Figure 3.12 reveal that prices surge on Uber a large fraction of the time (in

SF, it’s surging the majority of the time). Although most of the time the multiplier makes UberXs

25-50% more expensive, there are times (especially in SF) when the multiplier can double, triple, or

even quadruple prices.

3.4.2 Surge Duration and Updates

Next, I answer the question: how long do surges last? Figure 3.13 plots the duration of

surges for UberXs over two weeks. I define the duration of a surge as the continuous length of time

when the multiplier is >1.

When I first began collecting data from Uber in February 2015, I observed that 90% of

surges had durations that were a multiple of 5 minutes. This is shown by the stair-step pattern in

the “Feb. Manhattan” line in Figure 3.13. I also measured surge durations using the Uber API in

April 2015, and observed the same 5-minute pattern. In both of these cases, ⇠40% of surges last 5

minutes, and ⇠20% last 10 minutes. Less than 10% of surges last more than 20 minutes.

Strangely, the behavior of the surge price algorithm changed in April 2015. As shown by

the two “April” lines in Figure 3.13, 40% of surges are now less than 1 minute long. The remaining

60% of surges still loosely follow the 5-minute stair-step pattern.

There are two takeaways from Figure 3.13. First, under normal circumstances, Uber

appears to update surge prices on a 5-minute clock (I discuss jitter in greater detail below). Second,

the vast majority of surges are short-lived, which suggests that savvy Uber passengers should

“wait-out” surges rather than pay higher prices.

Figure 3.14 illustrates how Uber updates surge multipliers. Figure 3.14(a) shows the

datastream from the API (and what clients observed, prior to April 2015): surge changes at regular

5-minute intervals. Figure 3.14(b) shows the behavior of pingClient responses as of April 2015:

surge multipliers are still updated on a 5-minute clock, but within each interval there may be brief

periods of jitter. Jitter breaks up a 5-minute surge interval into three separate components, which

explains why I observe many surge durations less than 1 minute long in Figure 3.13. These two

processes are the same in Manhattan and SF, and for all types of Ubers.

Timing. Figure 3.15 examines the fine-grained timing of surge updates. I chose one day

of data in February and April, divided time into 5-minute intervals starting at 12:00am, and calculated

the exact moment in each interval when surge changed due to the clock and jitter. I observe that

the old client-update and the current API-update mechanisms are extremely regular: updates occur
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during a 35-second range in each interval. The new client-update mechanism is less precise: updates

occur during a 2-minute range in each interval. Jitters are distributed almost uniformly throughout

the interval, which suggests that jitter is driven by a stochastic or non-deterministic process.

Jitter. Next, I examine the behavior of jitter. In my data, 90% of jitter events last

20-30 seconds, and 100% are less than 1 minute. Furthermore, during jitter, I observe that the surge

multiplier is equal to the multiplier from the previous 5-minute interval. Because most surges only

last 5 minutes, this means that jitter causes the surge multiplier to drop 74% of the time in Manhattan,

and 64% of the time in SF. As shown in Figure 3.16, in 30-50% of jitter events the surge multiplier

drops to 1, depending on location. Thus, jitter almost always reduces prices for passengers, if they

are lucky enough to request a car during the brief window when the low multiplier is available.

Jitter also deviates from the 5-minute surge intervals in another key way. As I demonstrate

in the next section, the 5-minute surge intervals are uniform over specific geographic regions.

However, jitter occurs on a per-client basis. Figure 3.17 plots the number of my clients that observed

jitter at the same moment in time (recall, I have 43 total clients). I see that ⇠90% of jitter events are

only observed by a single client, and none are observed by more than 5 clients simultaneously.

In August 2015, I contacted Uber to make them aware of my findings. They were very

concerned about the presence of jitter in the datastream, and the implication that customers were

receiving inconsistent surge multipliers. I provided log data to Uber’s engineers, and they quickly

determined that jitter was being caused by a consistency bug in their system. The manifestation of

this bug was that random customers could receive stale surge multipliers. This precisely coincides

with my observations that jitter appeared at random times for random clients, and that the surge

multiplier during jitter was equal to multiplier from the previous 5-minute window. As of this writing,
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Uber is fixing the bug and restoring consistency for all customers.

3.4.3 Surge Areas

Next, I answer the question: how do surge prices vary by location? Intuitively, it is clear

that surge must vary geographically: a rural location is very different than Times Square.

To answer this question, I used the Uber API to query surge prices throughout Manhattan

and SF over the course of eight days. During these tests, I queried data from adjacent locations

that obey my visibility radius constraints (see §3.2.4). Fortunately, since I know that surge prices

only change every 5 minutes (and the API does not contain jitter), this enabled me to scale up my

measurements to large geographic areas.

Using this data, I looked for clusters of adjacent locations that always had equal surge

multipliers. Figures 3.18 and 3.19 show the regions of Manhattan and SF where the surge multipliers

are always in lock-step. These figures reveal the granularity of Uber’s surge price algorithm: Uber

partitions cities into surge areas and computes multipliers independently for each area. The numbered

areas correspond to the locations where I collected client data (see Figures 3.3a and 3.3b). Given the

odd shape of some regions, it is likely that Uber defines surge areas manually. Note that there are

some areas where I did not observe sufficient surging samples during my measurements (e.g., Upper

Manhattan and Washington Heights); in these cases I cannot isolate individual surge areas, so it is

possible these large areas may be composed of several smaller areas.

3.4.4 Algorithm Features and Forecasting

Next, I investigate the question: what features does Uber use to calculate surge prices?

Uber has a pending patent that lists potential features [141], but it is unclear what features are truly

used in the calculation.

To answer this question, I examine the cross correlation between observed supply, demand,

and EWT versus surge price. In these tests, I treat each feature as a continuous time series. For surge,

the time series is simply the observed surge multipliers during each 5-minute interval (I discard

jitters since they are unpredictable). For supply, demand, and EWT I construct corresponding time

series by averaging each quantity over the 5-minute window. I construct independent time series for

the four areas in Manhattan and SF where I collect client data, since each area has its own surge

characteristics. As before, I focus on UberXs.
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Although I examined many possible correlations between these features (such as supply and

surge, demand and surge, supply-demand ratio and surge, etc.), I obtained the strongest results when

comparing (average supply - average demand) and average EWT to surge. Figure 3.20 shows the

cross correlation (and p-value) between supply/demand difference and surge price. The correlation

coefficient at time shift �t is computed using surge at time t and feature values in the interval

[t + �t � 5, t + �t). I observe a relatively strong negative correlation when �10  �t  10,

which indicates that the surge multiplier rises when supply/demand difference shrinks. It appears that

Uber’s goal is to maintain a certain amount of slack in their car supply: when demand approaches

available supply, surge pricing is instituted to increase supply and reduce demand. Figure 3.20 also

reveals that Uber’s surge pricing algorithm is quite responsive, since the correlation is strongest when

�t = 0.

Figure 3.21 shows the cross correlation between average EWT and surge price. In this

case, I see a relatively strong positive correlation at �t = 0, i.e., EWT and surge price increase at the

same time. This result also makes sense: if surge increases during times of strained supply, then the

wait times for cars should also increase.

Forecasting. Given that I observe correlations between supply, demand, EWT, and

surge prices, this raises a new question: can future surge prices be forecast? To answer this question,

I fitted three linear regression models that take the current supply/demand difference, EWT, and

surge multiplier for UberXs as input, and predict the surge multiplier in the next 5-minute interval.

As before, I filter jitter out of the time series. I also evaluated models that accept historical data (e.g.,

samples from previous 5-minute intervals), but this resulted in worse predictive performance.

Table 3.1 presents the overall R2 scores for three linear regression models evaluated on

two weeks of UberX data. I fitted separate models for all four surge areas in Manhattan and SF

(see Figures 3.18–3.19), but in the interest of space I present the average R2 scores in Table 3.1. In

35



CHAPTER 3. UBER’S SURGE PRICING ALGORITHM

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-60 -40 -20  0  20  40  60
 0

 0.2

 0.4

 0.6

 0.8

 1

Correlation

p-value

C
o

rr
e

la
tio

n
 C

o
e

ff
ic

ie
n

t

P
ro

b
a

b
ili

ty

Time Difference in Minutes

Manhattan SF

Figure 3.20: (Supply - Demand) vs.

Surge for UberX.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-60 -40 -20  0  20  40  60
 0

 0.2

 0.4

 0.6

 0.8

 1

Correlationp-value

C
o

rr
e

la
tio

n
 C

o
e

ff
ic

ie
n

t

P
ro

b
a

b
ili

ty

Time Difference in Minutes

Manhattan SF

Figure 3.21: EWT vs. Surge for

UberX.

City
R2 Score

Raw Threshold Rush

NY 0.37 0.43 0.43

SF 0.40 0.43 0.57

Table 3.1: R2 scores of lin-

ear regression in Manhat-

tan and SF

all three models, I remove time intervals when the surge multiplier equals 1 from the data7 before

fitting, since this would make the prediction task too easy (e.g., you could achieve 86% accuracy in

Manhattan by always predicting that the surge multiplier will be 1, see §3.4.1).

Unfortunately, even with my large corpus of data, forecasting surge multipliers is an

extremely difficult task. The Raw model in Table 3.1 is the most permissive of my three models:

it was fitted and evaluated on the entire time series. I see that it has the worst performance, which

suggests that either I am missing some key data that is used in Uber’s surge calculation, or surge

pricing is simply very noisy. The Threshold model improves performance by being more restrictive:

it only attempts to predict the surge at time t if surge was >1 at t� 1. I instituted this filter because

surge cannot go below 1, i.e., I know less about the state of the system when surge is 1 than when

surge is >1.

Finally, the Rush model is the most restrictive: it was fitted and evaluated on the subset of

data corresponding to rush hours (6am–10am and 4pm–8pm). Although the performance of the Rush

model clearly benefits from the predictable characteristics of rush hour traffic (see §3.3.2), it does

not perform uniformly better than the more general Threshold model.

In summary, my forecasting results demonstrate that it is very difficult to predict surge

multipliers, even with large amounts of supply and demand data. None of my models exhibits

strong predictive performance in absolute terms (i.e., R2 � 0.9). This suggests that Uber relies on

non-public data to calculate surge prices, and motivates me to examine alternative strategies for

obtaining lower prices in §3.5.

7The two exceptions to this data cleaning rule are intervals where surge=1 directly preceding or proceeding an interval

where surge>1.
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Figure 3.22: Transition probabilities of UberXs when all areas have equal surge, and when one area

is surging.

3.4.5 Impact of Surge on Supply and Demand

The final question that I address in this section is: what is the impact of surge prices on

supply and demand? Uber has stated that the goals of surge pricing are to increase supply and

intentionally reduce demand, and they claim that the system increased the number of drivers by 70-

80% after it was introduced [84]. However, it is unclear if and how surge pricing continues to impact

supply and demand, now that drivers and passengers have acclimated to the system. Furthermore,

recent measurements of Uber suggest that surge pricing redistributes existing supply, rather than

encouraging new drivers to come online [67], but these observations have not been verified at-scale.

To answer these questions, I treat the cars in my data as state-machines, and examine how

they transition between states when there is and is not surge. At a high-level, I divide time into

5-minute intervals, and compare the states of cars at the beginning and end of each interval. Cars

that appear for the first time in interval t are placed in the initial, new state, while cars that disappear

go into the terminal dying state. Cars that start and end in surge area a are old. Finally, cars may

transition into states that are relative to surge areas, e.g., a car that moves from area a
i

to area a
j

during t is placed in the move-in state relative to a
j

, and the move-out state relative to a
i

.

Based on this model, I examine the behavior of cars during times when all four surge areas

have the same surge multipliers (in Manhattan and SF, respectively), and times when a single area

has a surge multiplier that is at least 0.2 higher than its neighboring areas (again, excluding jitter) in

the immediately proceeding interval. Intuitively, the former case captures times when there is no

monetary incentive for drivers to choose one area over another, while in the latter case there is a

monetary incentive to relocate to the surging area.

Figure 3.22 shows the probability of cars in specific surge areas being in each of my five

states. The black bars show the probabilities when all areas have equal surge multipliers, while red

corresponds to times when the given area has a multiplier that is at least 0.2 higher than its neighbors.
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For example, the Manhattan Area 1 “New” bars show that 18% of new cars appear in the area when

surge is equal in all four Manhattan areas, whereas 20% of cars appear in the area when it has higher

surge than its neighbors. I omit results for two areas because they rarely had higher surge prices than

their neighbors.

Results. First, I examine the impact of surge pricing on the behavior of new cars. In all

six areas, I observe that the fraction of new cars increases when that area has higher surge than its

neighbors. Although this effect is not large (3.7% on average), it is consistent. This suggests that

surge pricing is effective at drawing drivers onto the roads.

Second, I examine the impact of surge on the distribution of existing supply. In five areas,

I observe that the fraction of cars that move out of an area increases when it is surging. This is

the opposite result of what I expected. Furthermore, in three areas (Manhattan 2, SF 0, and SF

2) I observe more cars moving in during times of surge, while in three other areas (Manhattan 1,

Manhattan 3, and SF 3) I observe less cars moving in during surges. This result is inconclusive, and

also unexpected: I assumed that cars would flock to the surging area.

Third and finally, I examine the impact of surge on passenger demand. In all six areas,

the fraction of old cars increases while dying cars decrease within the surging area. Both of these

observations point to reduced demand within the surging area.

Discussion. The results in Figure 3.22 paint a complex picture of surge pricing’s impact

on supply and demand. On one hand, surge does seem to have a small effect on attracting new cars.

On the other hand, it also appears to have a larger, negative effect on demand, which causes cars to

either become idle or leave the surge area. Although I cannot say with certainty why surge has such

a large, negative effect on demand, one possibility is that customers have learned that surges tend to

have short duration (see Figure 3.13), and thus they choose to wait for 5 minutes before requesting a

ride. Another possibility is that surging areas may be impacted by adverse traffic conditions, which

prevents drivers from flocking to them.

To make the surge pricing algorithm more effective, I propose that Uber alter the algorithm

to update surge prices more smoothly. For example, rather than oscillating between periods of no

and high-surge, Uber could use a weighted moving average to smooth the price changes over time.

This would make surge price changes more predictable and less dramatic, which may encourage

driver flocking, as well as discourage sudden, temporary drops in customer demand. Another

alternative would be for Uber to adopt Sidecar’s pricing approach, in which drivers set their own

prices independently. This free-market approach obviates the need for a complex, opaque algorithm
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and empowers customers to accept or decline fares at will.

3.5 Avoiding Surge Pricing

In the previous section, I show that short-term surge prices cannot be forecast, even with

large amounts of data directly from Uber. This is disappointing, since forecasting short-term changes

in surge prices would be a useful capability for drivers and passengers.

In this section, I propose an alternative method that passengers can use to obtain lower

prices from Uber. Since I cannot forecast surges, this means that only the price information during

the current 5-minute surge interval is reliable. Thus, my goal is to locate the lowest price car for the

passenger given their current location and the instantaneous surge prices.

My Approach. My key insight is to leverage my knowledge of surge areas. Suppose a

user observes that the surge multiplier at their current location is m0, and there are a set of adjacent

surge areas A. I can use the Uber API to query the surge multiplier m
a

and EWT e
a

for each a 2 A,

as well as the walking time w
a

to each area. If m
a

< m0 and w
a

 e
a

for some a, then this means

the user could reserve an Uber immediately at a lower price, and walk to the pickup point in the

adjacent area before the car arrives. Startups have proposed similar approaches to avoiding surge

prices [163], however their techniques do not leverage precise knowledge of surge areas, or take

EWTs into account.

Results. To demonstrate the feasibility of my approach, I plot Figure 3.23, which shows

the percentage of time that each of my 43 measurement clients could have obtained a cheaper UberX

using my approach. I assume that people can walk 83 meters per minute (i.e., 5km/hour). I also

assume that, for my technique to be implemented in practice, it would need to rely on data from the

Uber API. Thus, surge prices change every 5 minutes and there is no jitter, but EWTs may change

moment to moment.

In Manhattan, I see that users around Times Square would have been able to request

cheaper cars 10-20% of the time, depending on the user’s precise location. In contrast, users in SF

would not generally benefit from my approach; only users at UCSF would be able to save money

2% of the time. My approach works better in Manhattan for two reaons: first, the surge areas in

Manhattan are smaller, so it is more feasible for users to walk from one area to another in only a few

minutes (50% of EWTs on Uber are less than 3 minutes, see Figure 3.11). Second, the surge areas in

SF tend to be more correlated than those in Manhattan, i.e., it’s rare for one area in downtown SF to
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(a) Manhattan (b) SF

Figure 3.23: Fraction of the time when passengers would receive lower surge prices on UberXs by

walking to an adjacent area.
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Figure 3.24: Amount that surge is reduced and walking time needed when passengers walk to an

adjacent area.

have significantly higher surge than all the others.

Figure 3.24(a) shows how much surge multipliers are reduced when users reserve Ubers

using my approach. The faded lines correspond to my 43 clients in Manhattan and SF, while the

solid lines are the combined results. I see that my approach brings substantial savings: in more than

50% of cases, surge multipliers are reduced by at least 0.5, i.e., a 50% savings or more.

Figure 3.24(b) shows how many minutes users would need to walk while using my

approach. In all cases, users walk for less than 7 and 9 minutes to meet the car in the adjacent surge

area in Manhattan and SF, respectively. Note that the surge areas in SF are larger than those in

Manhattan, so the shortest walks in SF are 7 minutes long, versus 5 minutes in Manhattan. Overall,
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these walking times are quite reasonable, given the dramatic savings that this strategy enables.

3.6 Summary

In this chapter, I present an in-depth analysis of Uber. I leverage four weeks of data

collected from Uber’s smartphone app and official API that covers midtown Manhattan and downtown

SF. In total, I collected 2.1 TB of data on supply, demand, EWTs, and surge prices for Uber vehicles.

I validate the fidelity of my methodology using ground-truth information about all taxi rides in NYC

in 2013.

My results reveal high-level characteristics about Uber’s service and the impact of surge

pricing. I observe that SF has 3⇥ more surges than Manhattan even though SF also has a much

greater supply of cars. Furthermore, surge pricing is noisy: the majority of surges last less than 10

minutes. Alarmingly, my investigation uncovered a bug in Uber’s systems that was causing some

customers to randomly receive out-of-data surge price information. Finally, I observe that on a

micro-scale, surge prices have a strong, negative impact on passenger demand, and a weak, positive

impact on car supply. However, it is possible that different effects may occur at the macro-scale (i.e.,

a whole city).
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Chapter 4

Algorithmic Pricing on Amazon
Marketplace

In this study, my goal is to empirically analyze deployed algorithmic pricing strategies on

Amazon Marketplace. Specifically, I want to understand what algorithmic pricing strategies are used

by participants in the market, how prevalent these strategies are, and ultimately how they impact

customer experience.

The remainder of this study is organized as follows. §4.1 covers background on Amazon

and the Amazon Marketplace, and technical features that facilitate algorithmic pricing. In §4.2, I

present my data collection methodology, including specific challenges that I needed to overcome to

obtain useful, representative data. §4.3 explores the algorithm that Amazon uses to select the Buy

Box winner, and shows the features that drive the Buy Box algorithm. §4.4 presents my approach

for detecting sellers using algorithmic pricing, and §4.5 explores the characteristics and impact of

algorithmic and Prime sellers. In §4.6, I present my purchase, revenue, and Buy Box simulation

methodologies and discusses their results. Finally, §4.7 summarizes the key findings of this study.

4.1 Background

I begin by briefly introducing Amazon Marketplace. I focus on the features of the market

that are salient to algorithmic pricing, including Third-Party (3P) sellers, the Buy Box, and finally

the APIs offered by Amazon Marketplace Web Services.
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Figure 4.1: An example Buy Box on Amazon.

4.1.1 Amazon Marketplace

Amazon, founded in 1994, is the largest e-commerce website in the US and Europe [120].

Although Amazon began as an online bookstore, it now sells over 20 categories of physical products

(even fresh food in select cities [34]), as well as a wide range of digital goods (e.g., downloadable

and streaming music, video, and e-books). Overall, Amazon earned $89B in revenue in 2014, and

boasts 244M active customers [68].

Amazon inspires fierce loyalty among customers through their Prime membership pro-

gram, which gives customers free 2-day shipping (or better) as well as unlimited access to digital

streams for $99/year. It is estimated that as of July 2016, half of all Amazon customers are Prime

subscribers [166]. Amazon’s success is further bolstered by their branded digital devices (Kindle

e-readers, tablets, phones etc.), which push customers towards Amazon’s shopping apps. Because of

these customer retention efforts, more than 50% of online shoppers navigate directly to Amazon to

make purchases, rather than using search engines or visiting competing online retailers [170].

3P Sellers and FBA. In addition to acting as a merchant, Amazon also functions as a

marketplace for third parties. Amazon claims to have 2M Third-Party (3P) sellers worldwide who

sold 2B items in 2014, representing 40% of all items sold via the website [7]. 3P sellers can opt

to handle logistics (inventory, shipping, returns, etc.) themselves, or they can join the Fulfilled By

Amazon (FBA) program, in which case Amazon handles all logistics.

The fee structure for 3P sellers is complicated, and involves five components [8, 10]:

1. Seller Fee: “Individual” sellers must pay $0.99/item sold, or sellers may become “Pro Mer-

chants” for $39.99/month.
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2. Referral Fee: Amazon assesses a referral fee on each product sold. The fees vary between 6-

45% of the total sale price, depending on the product category. The vast majority of categories

have a 15% referral fee. Amazon also enforces minimum referral fees of $1-$2/item.

3. Closing Fee: Amazon’s closing fees vary based on product category, shipping method, and

product weight. Media products (books, DVDs, etc.) have a flat fee of $1.35/product. Other

products have a $0.45 + $0.05/lb fee for standard shipping, or $0.65 + $0.10/lb for expedited

shipping.

4. Listing Fee: High-volume sellers that list more than 2M Stock Keeping Units (SKUs, a

seller-specified representation of an item) per month must pay $0.0005 per active SKU.

5. FBA Fee: Sellers that use FBA must pay a $1.04-$10.34 packing fee per product depending

on its size and type, plus variable per pound shipping fees ranging from $0.39 for small media

items, to $124.58 for extremely heavy, irregularly shaped items.

As I discuss in § 4.4, these fees influence the dynamic pricing strategies used by 3P sellers.

FBA Prime and Seller Fulfilled Prime. As more customers have subscribed to

Amazon’s Prime loyalty program, the importance of being a Prime seller has increased. Prime sellers

are highlighted visually with a small “badge” ( ) on Amazon’s website, which signifies to

Prime members that purchases made from these sellers will be delivers in two days or less. Thus,

Prime customers are incentivized to purchase products sold by Prime sellers. Amazon itself is a

Prime seller.

There are two ways for a seller to become Prime eligible. The first and most straightforward

way is for the seller to join the FBA program. In this case, Amazon handles all order logistics for

the seller, and can thus guarantee the level of service that Prime customers expect. However, not all

sellers are willing or able to join the FBA program. Thus, the second way is for the seller to join

the Seller Fulfilled Prime program. Sellers who choose to participate in this program must have a

proven track record of fullfilling orders quickly and maintaining available product inventory, among

other requirements. Sellers who are accepted into the Seller Fulfilled Prime program are able to

avoid paying the fees associated with FBA, leading to lower prices or increased profit margins, while

enjoying the same benefits as FBA sellers.
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Figure 4.2: An example New Offers page on Amazon, listing all sellers for a given product.

4.1.2 The Buy Box

When customers purchase products from Amazon, they typically do so through the Buy

Box. The Buy Box is shown on every product page on Amazon: it contains the price of the product,

shipping information, the name of the seller, and a button to purchase the product. Figure 4.1 shows

an example Buy Box.

However, many products on Amazon are sold by multiple sellers. In these cases, a

proprietary Amazon algorithm determines which seller’s offer is displayed in the Buy Box. Formally,

if a product is being offered by n sellers with prices P = {p1, · · · , pn}, the Buy Box algorithm is a

function B(P ) ! p
i

, with p
i

2 P . As shown in Figure 4.1, offers from other sellers are relegated to

a separate webpage (an example is shown in Figure 4.2).

Given the prominent placement of the Buy Box, it is not surprising that 82% of sales on

Amazon go through it [177]. This has made the underlying algorithm the focus of much speculation

by 3P sellers [31]. Although Amazon has released some information about the features used by the

Buy Box algorithm (e.g., prices, shipping options, and speed) [11], it is unknown whether this feature

list is complete, or what the weights of the features are.

Because “winning” the Buy Box is so critical for making sales on Amazon, sellers may use

dynamic pricing strategies that give them an advantage with respect to being chosen by the algorithm.
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Thus, I examine the Buy Box algorithm in-depth in § 4.3.

4.1.3 Amazon Marketplace Web Service

Amazon offers an array of tools to help 3P sellers manage product inventory. The most

sophisticated of these tools is the Amazon Marketplace Web Service (MWS), which is a set of APIs

for programatically interfacing with the marketplace. MWS includes functions for listing products,

managing inventory, and changing prices.1 MWS also has a subscription API, that allows sellers

to receive near real-time price updates for specified products. Each update includes aggregated

information about the lowest 20 prices offered for a product (or less, if there are fewer than 20 offers).

In addition to MWS, Amazon also has a web-based price matching tool for 3P sellers [13].

This tool allows a 3P seller to set a product’s price equal to the lowest competing offer. However,

this tool only adjusts the product’s price once: if the lowest price changes again, the seller’s price is

not automatically reduced as well.

Seller Platforms. The capabilities of MWS are clearly designed to facilitate dynamic

pricing. Companies like Sellery, Feedvisor, Appeagle, RepriceIt, and RepricerExpress leverage

MWS to offer subscription-based services for 3P sellers that combine inventory management with

dynamic pricing capabilities. These services enable any merchant to easily become a 3P seller and

leverage sophisticated dynamic pricing strategies. I discuss the types of strategies offered by these

services in greater detail in § 4.4.

4.2 Data Collection

There are two goals of my study: first, to analyze the dynamic pricing strategies being

used by sellers on Amazon and second, to investigate the effects of pricing dynamics on buyers and

sellers. To achieve this goal, I require longitudinal data about sellers and their prices—ideally for a

large number of products—in the marketplace. In this section, I describe my data collection process,

including specific challenges that I needed to overcome to obtain useful, representative data.

4.2.1 Obtaining Sellers and Prices

Ideally, I would have liked to use the Amazon Marketplace Web Services (MWS) API to

collect the seller and price information for products. Indeed, the API offers functionality that returns

1Amazon’s documentation stipulates that sellers may only update prices every 20 minutes [6].
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information about the top twenty offers for a given product, including the unique IDs of the sellers,

their prices, etc. Unfortunately, the only way to access this API for a given product is to actually

list it for sale. In other words, I would have had to list thousands of products for sale on Amazon to

collect large-scale data from the MWS API, which is not feasible in practice (considering that I have

no actual product inventory, and no ability or desire to fulfill product orders).

Instead of using the API, I used web scraping to obtain information on the active sellers

and their prices. Specifically, for each product I examine, I crawled the New Offers page2 (the page

that is linked to in Figure 4.1 if one clicks on “2 new”, shown in Figure 4.2). This page lists all 3P

sellers, their prices, their shipping costs, and their reviews (number of reviews and average score).

Unfortunately, this information is paginated into ten 3P sellers per page; I describe below how I

handle cases where there are more than ten 3P sellers.

In addition to scraping the New Offers pages for products, I also scraped the product pages

themselves. I use the data from the product pages to analyze the Buy Box algorithm in § 4.3.

Calculating Prices. It is important to note that the New Offers page lists both the base

price and the shipping price for each seller. Throughout the thesis, when I refer to “price”, I am

referring to the total price, i.e. the base price + shipping price. I do this as Amazon uses total price

when users explicitly sort products by price; users cannot search or sort by base price alone.

4.2.2 Crawling Methodology

Amazon operates a complex, global, dynamic computing infrastructure to support its

storefront. As such, there are several technical and methodological issues that I must address to

insure that the data I collect for this study is representative and unbiased.

Temporality. Because 3P sellers (and Amazon) can change their price at any time, I

need to decide how frequently I will crawl each page. To do so, I create a high-resolution dataset

that will help to illuminate the tradeoff between crawling resolution and frequency. Specifically, I

randomly selected 5 products from the best-seller products3 and crawled their product page and the

first 2 seller pages (covering up to 20 sellers) once per minute for 3 days.

2In this study, I only focus sellers who offer new items; used items are not covered, and I leave them to future work.
3http://www.amazon.com/Best-Sellers/zgbs, Best-seller products come from 23 departments from

Amazon, such as Appliances, Beauty, Electronics, etc. Altogether there are 1,790 best-seller products (I exclude digital

goods such as e-books, downloadable music, and gift cards).
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the Buy Box on a product page.

I first examine how frequently sellers’ prices change and how frequently the Buy Box is

updated. I plot the cumulative distribution of inter-update times for sellers, the Buy Box price, and

the Buy Box seller in Figure 4.3. I observe that the updates are surprisingly dynamic: 40% of price

changes occur within a minute of the previous price change, with a long tail of update times. To

explore the origins of this high level of dynamicity, I plot a timeseries of the Buy Box price of an

example product in Figure 4.4 (I observed similar behavior for other products, but do not include

them due to space constraints).

I observe that the price appears to change five times in this timeseries, but that old prices

sometimes briefly reappear after a price change. This result is likely due to Amazon’s distributed

infrastructure; Amazon states that it can take up to 15 minutes for all systems to converge to the new

price. Thus, the very rapid price “jitters” are likely caused by transient inconsistencies in Amazon’s

infrastructure, rather than actual price changes by sellers.4

Using these results, I select a crawling frequency. As a tradeoff between number of

products and crawling frequency, I choose to cover more products at longer intervals. As shown

in Figure 4.3, most changes happen either on very short timescales (< 1 minute; likely Amazon

inconsistencies) or very long timescales (> 30 minutes). I therefore choose a crawling frequency of

every 25 minutes.

Geolocation. Prior work has shown that e-commerce companies sometimes personalize

prices for users based on their geolocation [129, 130]. If Amazon personalized prices based on

geolocation it would complicate my data collection efforts, since I would need to collect data from

4To further verify these results, I set up an Amazon Individual Seller account, listed several products, and changed

their prices at specific times. I found that when prices are in an inconsistent state, a customer cannot add the item to their

shopping cart (i.e., even though a customer may see an outdated price, the customer is not able to add the product to their

cart at the old price).
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diverse geolocations to obtain a representative sample of prices.

To determine if Amazon personalizes prices based on geolocation, I crawled 20 products

every hour for three days from three different locations around the US. Then I compared the Buy

Box winner and Buy Box price of each product in each time epoch across the three locations. I did

not observe any differences in the Buy Boxes across my three geolocations.

Based on this result, I conclude that prices on Amazon are consistent regardless of the

users’ location (at least with respect to users visiting amazon.com from within the continental US).

Thus, I do not consider geolocation further in this study.

Prime Membership. Another important question is whether Amazon displays different

Buy Boxes to Prime and non-Prime users. In theory, Amazon could personalize the Buy Boxes for

Prime users to always show them an offer from a Prime seller. Intuitively, this might encourage

Prime customers to make more purchases.

To determine if Amazon personalizes the Buy Box based on the Prime-status of the user,

I conducted two crawls in parallel: one from a browser that was not logged-in to Amazon, and a

second browser that was logged-in to a Prime account. Each browser crawled the product pages and

first two seller pages for 1,000 products, revisiting each product every 25 minutes. I repeated this

process for 15 days. Finally, I compared the Buy Box seller, Buy Box price, and top-20 seller list of

each product in each time epoch across the two browsers. I did not observe any differences in the

Buy Boxes or seller lists between my Prime and non-Prime user accounts.

Based on this result, I conclude that Amazon does not personalize the Buy Box based on

the Prime-status of the user. Note that Amazon may personalize other aspects of their storefront

based on the user’s Prime-status (e.g., product recommendations and search results), but these forms

of personalization do not impact my data collection in this study.

4.2.3 Selecting Products

Next, I turn to selecting the products to study. Recall that I am aiming to study dynamic

pricing; not all products are equally likely to have such sellers, so I focus on best-selling products

since they are likely to have many competing sellers. I conduct two separate crawls that have different

characteristics.

First Crawl (Crawl1). My first crawl was conducted between September 15, 2014 and

December 8, 2014. I select 837 best-selling products that had at least two sellers at the beginning
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of the crawl. For this crawl, I downloaded all seller pages, but did not download the product page

(containing the Buy Box).

Second Crawl (Crawl2). I conduct a second crawl between August 11, 2015 and

September 21, 2015. I select 1,000 best-selling products to study, and downloaded both the product

page (containing the Buy Box) and the first two pages of 3P sellers (typically, but not always,

containing the 20 sellers with the lowest prices). I choose to only download the first two pages of

sellers, as I found the sellers who change their prices often (suggesting dynamic pricing algorithms)

were within the first two pages 96% of the time. Thus, downloading only the first two pages massively

reduces the amount of data I need to collect while still capturing most of the “interesting” behavior.

It is important to note that these crawls cover different products, as the best-selling products

change over time. As shown in Figures 4.5 and 4.6, the overall characteristics of prices and sellers

are very similar between the first two crawls despite the time difference (details of these Figures are

discussed in the next section).

Limitations. There is one noteworthy limitation to my dataset: it is biased (by design)

towards best-selling products. To briefly quantify this bias, I randomly sampled 2,158 products from

a public listing of all Amazon products.5 I compare the product price and the number of sellers in

Figures 4.5 and 4.6; as expected, I observe that my best-sellers show many more sellers than random

products, as well as somewhat lower prices.

5https://archive.org/details/asin_listing
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4.3 The Buy Box

I begin my analysis by exploring how Amazon’s systems evaluate sellers. First, I briefly

examine Amazon’s seller ranking algorithm, and follow up by characterizing the dynamics and

behavior of the Buy Box. In both cases, I observe that Amazon uses non-trivial strategies to evaluate

sellers (i.e., price is not the only factor that impacts ranking and selection for the Buy Box). Second,

I conduct an in-depth investigation of the features and weights that drive the Buy Box algorithm.

Understanding the Buy Box algorithm is crucial, since it may influence how sellers choose dynamic

pricing strategies.

Note that in this section, I only use data from Crawl2, since it contains Buy Box winners

and seller rankings.

4.3.1 Seller Ranking

As shown in Figure 4.2, Amazon explicitly ranks all sellers for each product on the New

Offers page. However, the Buy Box winner is not necessarily the seller who is ranked the highest.

Thus, I first examine the seller ranking algorithm as it offers clues as to how Amazon chooses to

weigh various seller features.

I collect the rankings for all products in my dataset, and calculate Spearman’s Rank

Correlation (⇢) between the ordered list of sellers returned by Amazon, and the list of sellers sorted

by price, for each product in my dataset. If the lists perfectly correspond (i.e., Amazon returns sellers

sorted by price), then Spearman’s ⇢ will equal 1. Contrary to my expectations, Amazon does not

always sort sellers by price. As shown in Figure 4.7, around 20% of products have correlation <1.

This result gives me my first clue that Amazon’s systems take additional seller attributes into account

(besides price) when making decisions.

4.3.2 Behavior of the Buy Box Algorithm

Next, I examine the empirical behavior of the Buy Box, starting with dynamics over time.

Figure 4.8 plots the number of changes to the price and seller in the Buy Box for all products in the

Crawl2 dataset over the six weeks of observation. I immediately see that most products change a

number of times: only 13% of products have static Buy Box prices over the entire period, while 50%

of products have more than 14 changes. However, I see fewer changes to the Buy Box winner: the

seller winning the Buy Box is constant for 31% of products. Thus, for many products, the Buy Box
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winner and price is highly dynamic; some products even experience hundreds of changes, or many

more than one per day.

Next, I examine the relationship between seller rank (from the New Offers page) and the

winner of the Buy Box. Figure 4.9 shows the fraction of sellers at different ranks that “win” the

Buy Box, i.e., are chosen by the algorithm. Rank zero means they are the first seller in the list.

Surprisingly, only 60% of the top-ranked sellers win the Buy Box, and there is a long tail of sellers at

higher ranks that win. Recall that I have already shown that Amazon does not rank sellers solely on

prices (see Figure 4.7). Taken together, these results show that Amazon’s systems take additional

characteristics beyond price into account when evaluating sellers.

4.3.3 Algorithm Features and Weights

In the previous section, I demonstrated that the Buy Box algorithm uses features beyond

just price to select the Buy Box winner. In this section, I use Machine Learning (ML) and regression

analysis to try to infer some of the features and weights used by the Buy Box algorithm.

Model and Features. To facilitate my analysis, I model the Buy Box as a prediction

problem. Specifically, for a product offered by n sellers, each of which is characterized by a feature

vector, my goal is to predict which seller will be chosen to occupy the Buy Box. Given my dataset, I

construct a feature vector for each seller containing the following seven features:

1. Price Difference to the Highest: difference between the seller’s price and the current highest

price for the product.

52



CHAPTER 4. ALGORITHMIC PRICING ON AMAZON MARKETPLACE

2. Price Ratio to the Highest: ratio between the seller’s price and the current highest price of the

product.

3. Average Rating: average customer rating6 of the seller.

4. Positive Feedback: positive feedback percentage for the seller.

5. Feedback Count: total feedback count for the seller.

6. Is the Product FBA?: true if the seller uses FBA.

7. Is Amazon the Seller?: true if the seller is Amazon.

According to Amazon’s documentation, as well as speculation from 3P sellers, other

features are possibly used by the Buy Box algorithm [11, 31]. This includes sales volume, response

time to customer inquiries, rate of returns and refunds, and shipping times. Unfortunately, I cannot

measure these features, and thus cannot quantify their impact on the Buy Box algorithm. However,

as I will show, even without these features I am able to achieve high prediction accuracy, suggesting

that my data does capture the most important seller features.

Classifier Selection. I leverage a Decision Tree (DT) classifier to predict whether a

specific seller of a product wins the Buy Box. DT is a robust, non-linear classifier with the ability to

handle both categorical and continuous variables while exploiting various feature combinations [172].

Furthermore, DT is an ideal classifier for my task because it outputs interpretable measures of feature

importance (calculated as the Gini index). In contrast, other classifiers, such as kernel-based SVM,

are harder to interpret. Note that I evaluated other common classifiers, such as Random Forest and

SVM, but found that DT performed best in my experiments.

Evaluating the Classifier. Figure 4.10 shows the accuracy of my DT classifier at

predicting the winner of the Buy Box (using 10-fold cross-validation) for all products in Crawl2,

as a function of the number of sellers for a given product. Obviously, it is trivial to achieve 100%

accuracy in the 1-seller case; however, I see that the classifier achieves 80–87% accuracy even in the

most challenging cases with many sellers.

To put the accuracy results of my classifier in perspective, Figure 4.10 also depicts the

accuracy of two naïve baseline classifiers. One baseline classifier always predicts that the seller with

6Fully described in § 4.5.1, the rating and feedback of a seller come from customer surveys asking for a star rating

(0–5 stars) and specific questions about the customer’s experience.
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Decision Logistic Regression
Feature Tree Weight Coeff Std-Err

Price Ratio to the Highest 0.34 -0.43⇤⇤⇤ 0.003

Price Difference to the Highest 0.30 0.01 0.009

Positive Feedback 0.12 0.44⇤⇤⇤ 0.008

Feedback Count 0.10 -0.002 0.007

Average Rating 0.06 0.26⇤⇤⇤ 0.003

Is Amazon the Seller? 0.06 — –

Is the Product FBA? 0.03 0.44⇤⇤⇤ 0.003

Table 4.1: Relative importance of different features in winning the Buy Box, as determined by my

DT classifier. The significance of coefficients in the regression model are: ⇤p < 0.05; ⇤⇤p < 0.01;
⇤⇤⇤p < 0.001.

the lowest price will win the Buy Box (if there are multiple sellers offering the same lowest price, it

chooses the lowest ranked one), while the other chooses the lowest ranked seller. Both baselines only

achieve 50–60% accuracy, which reconfirms that price is not the sole feature used by the Buy Box

algorithm, and also highlights the impressive predictive power of my DT classifier.7

Feature Importance. Next, I examine the Gini importance calculated for each feature

by my DT classifier. Higher feature-importance implies that the feature is more predictive in deciding

who wins the Buy Box. As shown in Table 4.1, the two price-based features are significantly more

important than other features. However, the seller’s positive feedback and feedback count are also

important metrics for winning the Buy Box.

Although I observe that “being Amazon” does confer some advantage, I caution that this

does not necessarily mean that Amazon has tilted the Buy Box algorithm in their favor. Recall that

Amazon’s Buy Box documentation states that the algorithm uses several features that I am unable

to measure, such as sales volume [11]. It is possible that Amazon scores highly in these missing

features, which manifests in my classifier as additional weight in the “Amazon is the Seller” feature.

Interestingly, I observe that the DT classifier assigns low weight to the FBA feature. This

struck me as odd, given that conventional wisdom about how the Buy Box algorithm functions [31]

suggests that FBA should have positive correlation with winning the Buy Box. To explore this

discrepancy, I examine feature importance using standard regression tests in the next section.

Regression Analysis. The feature importance scores returned by the DT classifier

7My dataset includes at least 1K samples at each rank, thus the results are statistically significant.
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should not be interpreted as the correlation or “weights” of the features. A feature is deemed

important by the DT learning algorithm based on its ability to split the data while decreasing entropy.

To determine the weight or correlation of the features, I ran a logistic regression on the data.

The depedent variable is binary (whether or not the seller won the Buy Box) and the independent

variables are kept the same as the DT features with two exceptions: I exclude the “Is Amazon the

Seller?” feature, and I add a constant unit intercept. For the regression tests, I omitted all data points

where Amazon is the Buy Box seller since the standard deviation for Amazon winning the Buy Box

is always close to zero (Amazon wins the Buy Box 90% of the times it contests for it). This explains

I why omitted the“Is Amazon the Seller?” feature from the regression.

The results of the regression are shown in Table 4.1. The coefficients for features Price

Difference to the Highest and Feedback Count are inadmissable due insignificant p-values. Of the

remaining features, FBA, Positive Feedback and Price Ratio to the Highest have the highest correla-

tions. In this case, the FBA feature coefficient obeys conventional wisdom (i.e., it is important), which

stands in stark constrast to the feature importance returned by the DT classifier. This demonstrates

that while having FBA improves a seller’s odds to win the Buy Box, it is not enough to determine a

unique winner (which is not surprising, since it is only a binary variable). To give a more concrete

example, consider a scenario where 15 out of the 20 sellers are offering FBA. Given the strong,

positive correlation between FBA and winning the Buy Box, there is a high probability that the Buy

Box winner is one of the 15 sellers. However, for selecting a Buy Box winner from the 15, one has to

rely on features other than FBA. In other words, although FBA shows significant positive correlation,

its discriminatory power is low, which is why it is awarded a poor feature importance score by the

DT classifier.

Summary. Overall, I observe that Amazon’s algorithm for choosing the winner of the

Buy Box is a combination of a number of undocumented features and weights. I am able to gain

some visibility into this algorithm, with the results indicating that price, seller feedback, feedback

count, and FBA are all important features. These results suggest that sellers who use algorithmic

strategies to maintain low prices relative to their competitors are likely to gain a large advantage in

the struggle to win the Buy Box.

55



CHAPTER 4. ALGORITHMIC PRICING ON AMAZON MARKETPLACE

4.4 Dynamic Pricing Detection

I now turn to detecting algorithmic pricing on Amazon Marketplace. I note that doing so is

non-trivial, as external observers such as ourselves are only able to measure the prices offered by

sellers (and not their usage of the Amazon Marketplace API, etc). Moreover, I lack ground truth

on which sellers are using algorithm pricing. Therefore, I build a detection algorithm that tries to

locate sellers that behave like “bots”, i.e., sellers where the prices they set and the timing of changes

suggest algorithmic control.

4.4.1 Methodology

I hypothesize that sellers using algorithmic pricing are likely to base their prices at least

partially on the prices of other sellers. This makes sense intuitively: for example, a seller who always

wants to offer the lowest on a specific product must set their price relative to the competitor with the

lowest price. Thus, I first define several target prices that the seller could match against. I motivate

my selection of target prices by examining popular repricing software for Amazon Marketplace,8

and choose three target prices for each product: lowest price, Amazon’s price, and the second-lowest

price.9

For a given seller/product pair (s, r), I construct a time series of the prices p
i

offered by

the seller at time t
i

:

S
r

= {(t0, p0), (t1, p1), · · · , (tm, p
m

)}

I also construct three target price time series, corresponding to the lowest price plow
i

, the 2nd lowest

price p2nd
i

, and Amazon’s price pamzn

i

for r at each time t
i

:

LOW
r

= {(t0, plow0 ), (t1, p
low

1 ), · · · , (t
m

, plow
m

)}

2ND
r

= {(t0, p2nd0 ), (t1, p
2nd
1 ), · · · , (t

m

, p2nd
m

)}

AMZN
r

= {(t0, pamzn

0 ), (t1, p
amzn

1 ), · · · , (t
m

, pamzn

m

)}

Note that when I construct the three target price time series, I exclude the prices offered by s. For

example, if s always offers the lowest price for r, then LOW
r

will actually contain the second-lowest

price for r at each time t
i

. This exclusion rule also prevents me from comparing Amazon’s prices
8https://sellerengine.com/sellery/
9In fact, Sellery provides one more option: matching to the average price. However, this strategy is neither likely to be

useful for winning the Buy Box, nor being competitive among the sellers.
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against themselves. Finally, note that Amazon does not sell all products in my dataset, thus only a

subset of seller/product pairs include AMZN
r

.

Once I have constructed the time series corresponding to (s, r), I calculate the similarity

between S
r

and LOW
r

, 2ND
r

, and AMZN
r

(respectively) using Spearman’s Rank Correlation.

When ⇢ is large, it means that the price changes contained in the pair of time series occur at the

same moments, and that the magnitude of the price changes are relatively constant. I mark pairs with

⇢ � 0.7 (the empirical cutoff of a strong positive correlation) and p-value  0.05 as algorithmic

pricing candidates.

The final step in my methodology is to filter my candidates. Intuitively, if a seller exhibiting

high correlation with the target price also makes a large number of price changes, this provides more

evidence that the seller is using algorithmic pricing. Conversely, if the number of price changes in

the time series is small, then it is possible that the correlation is coincidental. Thus, I define the

change threshold as the minimum number of price changes that must occur in a time series S
r

for

me to consider s as using algorithmic pricing.

Figure 4.11 shows the number of sellers that I consider to be doing algorithmic pricing

when I apply different change thresholds. As expected, I observe that the number of sellers decreases

rapidly as I increase the change threshold. Unless otherwise stated, in the remainder of the study, I

choose 20 as my change threshold since it represents a conservative threshold that is in the “knee” of

the distribution.

The final step in my methodology is to filter my candidates. Intuitively, if a seller exhibiting

high correlation with the target price also makes a large number of price changes, this provides more

evidence that the seller is using algorithmic pricing. Conversely, if the number of price changes in

the time series is small, then it is possible that the correlation is coincidental. Thus, I define the
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Strategy
Threshold = 10 Threshold = 20

Sellers Products Sellers Products

Lowest Price 726 544 426 408

Amazon Price 297 277 176 183

2nd Lowest Price 721 494 425 370

Total 918 678 543 513

Table 4.2: Number of sellers and products with detected algorithmic pricing, based on two different

change thresholds. I use a change threshold of 20 unless otherwise stated.

change threshold as the minimum number of price changes that must occur in a time series S
r

for

me to consider s as using algorithmic pricing.

Figure 4.11 shows the number of sellers that I consider to be doing algorithmic pricing

when I apply different change thresholds. As expected, I observe that the number of sellers decreases

rapidly as I increase the change threshold. Unless otherwise stated, in the remainder of the thesis, I

choose 20 as my change threshold since it represents a conservative threshold that is in the “knee” of

the distribution.

4.4.2 Algorithmic Pricing Sellers

Now that I have described my methodology, I briefly examine the set of sellers that I find

to be doing algorithmic pricing. Table 4.2 shows the number of algorithmic pricing sellers and the

number of products they sell that I detect with change thresholds of 10 and 20. In this table, I merge

the sellers and products from Crawl1 and Crawl2 and present the total unique numbers.

I immediately observe that many more sellers appear to be using the overall lowest price

(and second-lowest price) as the target for their algorithmic pricing than Amazon’s price. However,

it is important to note the different strategies are not necessarily mutually exclusive. For example, a

seller matches to both Amazon and lowest when Amazon is the lowest price, and a seller matching

to the lowest price is likely to often match (i.e., correlate strongly with) the second-lowest price as

well. The Total row shows the overall unique numbers of sellers and products I detect. In the case

when the change threshold is 20, I see that 2.4% of all sellers in my dataset use algorithmic pricing.

However, this is 38% of all sellers that have �20 changes for at least one product they sell.

To determine the gap between the prices offered by the suspected algorithmic sellers and

the target prices, I plot two figures. Figure 4.12 examines the absolute difference between the

algorithmic sellers’ prices and the corresponding target prices. I separate sellers matching to the

58



CHAPTER 4. ALGORITHMIC PRICING ON AMAZON MARKETPLACE

$8.5

$9

$9.5

$10

12 13 14 15 16 17 18 19 20

P
ri
ce

Timeline (November, Year 2014)

Algo Seller
Seller 1
Seller 2

Seller 3
Seller 4

Figure 4.14: Example of 3P seller (in red) match-

ing the lowest price of all other sellers.

$10

$12

$14

$16

$18

$20

22 24 26 28 30 02 04 06 08 10

P
ri
ce

Timeline (November, Year 2014)

Algo Seller Seller1 Seller 2

Figure 4.15: A second example of 3P seller (in

red) matching the lowest prices offer by two

other sellers.

$7

$8

$9

$10

30 31 01 02 03 04 05 06 07 08 09

P
ri
ce

Timeline (October -- November, Year 2014)

Algo Amazon
Seller 1

Seller 2
Seller 3

Figure 4.16: Example of Amazon (in red) set-

ting a premium over the lowest price of all other

sellers.

$6

$7

$8

$9

$10

23 24 25 26 27 28 29 30 31 01

P
ri
ce

Timeline (August -- September, Year 2014)

Algo Amazon
Seller1

Seller 2
Seller 3

Figure 4.17: Example of Amazon (in red) match-

ing to the lowest price over time.

lowest price and sellers matching Amazon’s price in this plot (I ignore the second-lowest price in this

plot as matching to the second-lowest price is very similar to matching to the lowest). I observe that

algorithmic sellers who match to the lowest price are very close to the lowest price: 70% of these

sellers set their price within $1 of the lowest price. However, only 40% of algorithmic sellers are

within $1 of Amazon’s price.

The fact that algorithmic sellers matching to Amazon tend to charge higher prices may be

due to the required commission fees that Amazon charges. For example, if a 3P seller and Amazon

share the same wholesale cost for a product, the 3P seller must charge a higher price to maintain the

same profit margin. As described in § 4.1.1, Amazon’s commission fees are around 15% for most
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product categories. To see if I can observe algorithmic sellers that include these fees in their prices, I

plot the relative difference between the algorithmic sellers’ prices and the target prices in Figure 4.13.

As expected, I see very different behavior between algorithmic sellers matching Amazon’s price and

the overall lowest price; I can observe a number of sellers who choose a new price that is 15–30%

above Amazon’s price.

4.4.3 Price Matching Examples

I conclude this section by showing a few example products where I detected algorithmic

pricing. First, Figure 4.14 shows an example where a 3P seller has a clear strategy to always match

the lowest price across all other sellers. In the figure, I can see four other sellers that offer the lowest

price over time, and the algorithmic seller (in red) always quickly matches their price.

Second, I observe several cases where the seller offering the lowest price is able to sell

the product well above their reserve price. As shown in Figure 4.15, the algorithmic seller always

matches the lowest price from the other two sellers. Although the algorithmic seller is willing to sell

the product for as low as $12, the majority of the time they sell at prices up to 40% higher.

Third, I observe many cases where Amazon itself appears to be employing algorithmic

pricing. Figure 4.16 shows a case where Amazon (in red) chooses their price to be a premium above

the lowest price of all other sellers. In the figure, I observe that there are three other sellers that offer

the lowest price at different points in time, but that Amazon is almost always slightly more expensive.

Fourth, I observe cases that Amazon adopts more complex pricing strategies than simply

matching lowest prices. As shown in Figure 4.17, Amazon appears to have a ceiling at around $9,

above which they match the lowest price, but below which they sell the product at a small premium

relative to the lowest price.

4.5 Analysis

At this point, I have identified the sellers who are likely using algorithmic pricing. In

this section, I compare and contrast the characteristics of algorithmic, non-algorithmic, Prime, and

non-Prime sellers. In particular, I am interested in answering the following questions: (1) How do

the business practices of algorithmic and Prime sellers compare to non-algorithmic and non-Prime

sellers? (2) What fraction of market dynamics are likely caused by algorithmic and Prime sellers?

and (3) What is the impact of algorithmic and Prime sellers on the Buy Box? My hypothesis is
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that Prime sellers will exhibit characteristics which are more similar to algorithmic sellers than

non-algorithmic sellers.

Identifying Prime Sellers. I introduce two new classes of sellers in this section: Prime

and non-Prime sellers. I label a seller as a Prime seller if it has offered Prime shipping on any product

at any epoch in the entirety of my dataset. I find that 70% of Prime sellers offer Prime shipping on all

of their products in all epochs, meaning that most Prime sellers exhibit uniform behavior. Although

some sellers do not exhibit this uniformity (e.g., they only offer Prime shipping on a subset of their

products), these sellers are a minority and I do not expect them to significantly impact my results.

Overall, my dataset includes 7,248 Prime sellers (out of 33,305 total sellers). I observe that

65% of algorithmic sellers are also Prime sellers. This matches my expectation that sellers willing

to invest the resources in algorithmic pricing software are also willing to invest in sophisticated

logistics capabilities. In contrast, only 5% of Prime sellers are algorithmic sellers, suggesting that

the converse relationship is not necessarily true.

4.5.1 Business Practices

To compare the general business practices of sellers, I examine the following four seller-

level characteristics: lifespan of products, inventory size, feedback volume, and ranking in the seller

page. Note that this list of characteristics is not comprehensive: as mentioned in § 4.3.3, I do not have

access to several seller features such as return rate of products, shipping time, etc. Since Amazon

itself plays a dual role as a merchant and the host of the marketplace, I examine its role as a seller

separately.

Product Lifespan. I begin by examining the lifespan of seller/product pairs in my

dataset. The lifespan of a pair begins the first time I observe a seller offering that product, and

ends the last time I observe that seller offering the product. Given my crawling methodology, the

shortest possible lifespan is 25 minutes, while the longest are 3 and 1 months for Crawl1 and Crawl2,

respectively.

Figure 4.18 shows the distribution of seller/product lifespans. In this and all subsequent

figures in this section, I use the same format for presenting results: the “A” line refers to algorihmic

sellers, “N-A” refers to non-algorihmic sellers, “P” refers to Prime sellers, and “N-P” refers to

non-Prime sellers.

Figure 4.18 shows that algorithmic sellers are active in the marketplace for significantly

longer periods of time than non-algorithmic sellers. For example, the median seller/product lifetime
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for an algorithmic seller is 30 days, while it is only 15 days for a non-algorithmic seller. Prime

and non-Prime sellers closely follow the trend for non-algorithmic sellers lifespans. As I show

momentarily, my data suggests that algorithmic sellers have a high sales volume, so the long lifespans

of their products further suggest that they have a large amount of inventory. Note that the vertical

anomalies in Figure 4.18 around 1 month are artifacts caused by the different lengths of Crawl1 and

Crawl2.

Offers, Feedback, and Rank. Next, I compare the total number of products offered

for sale by algorithmic and non-algorithmic sellers. Since Crawl1 and Crawl2 focused on best selling

products, the dataset may not contain all products sold by sellers. To obtain complete inventories, I

conducted a separate crawl that exhaustively collected the entire inventory for 100 randomly selected

algorithmic and non-algorithmic sellers, respectively. Note that the inventory for algorithmic sellers

includes all products they sell, not just specific products where I detect algorithmic pricing.

Surprisingly, as shown in Figure 4.19, algorithmic sellers sell fewer unique products by a

large margin versus non-algorithmic sellers. This suggests that algorithmic sellers tend to specialize

in a relatively small number of products, perhaps focusing on items that they can obtain in bulk at

low wholesale prices. I also see that Prime sellers offer the least number of products for sale, while

non-Prime sellers tend to offer the most. This suggests that Prime sellers tend to focus on a limited

group of items where they can earn profit while still offering expedient shipping (e.g., it may be

difficult for a 3P seller to make a profit offering Prime shipping on a $5 pencil set).

Next, I examine the feedback received by sellers from customers. On Amazon, customers

may rate sellers on a 0–5 scale and also provide feedback about whether their experience with the

seller was positive or negative. Amazon presents each seller’s average rating (0–5), percentage of
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feedback that is positive (0–100), and total amount of feedback on the New Offers pages. Note that

Amazon does not display these stats for sellers with insufficient feedback (typically new sellers),

and thus I ignore them in the following analysis (this filters out 1.3%, 24%, 6.5%, and 28.4% of

algorithmic, non-algorithmic, Prime, and non-Prime sellers in my dataset, respectively).

Figure 4.20 shows the cumulative distribution of positive feedback percentage for all sellers

in my dataset. Overall, almost all sellers have greater than 80% positive feedback. While algorithmic

sellers garner slightly higher positive feedback than non-algorithmic sellers, the difference is very

small. The suggests that algorithmic sellers do not have appreciably better products or customer

service versus non-algorithmic sellers.

However, amongst all four seller types, Prime sellers earn the highest overall feedback.

One possible explanation for this finding is self-selection: only well-managed, efficient sellers are

capable of offering Prime shipping, and these are the same sellers who are likely to have good

customer service. An alternative explanation is that Amazon only permits superior sellers to join the

Prime program, meaning that Prime sellers must have good feedback by construction.

Figure 4.21 examines the amount of feedback received by different seller types. In this

case I observe a stark contrast: algorithmic sellers acquire significantly greater amounts of feedback.

There are two reasons why this could be happening: first, algorithmic sellers could have much higher

sales volume than other sellers. Second, algorithmic sellers could be more aggressive about soliciting

customer feedback. I also observe that Prime sellers receive more feedback than non-Prime sellers.

The feedback and sales volume characteristics of algorithmic and Prime sellers put them

at an advantage with respect to non-algorithmic and non-Prime sellers, respectively. As shown in

Figure 4.22, when comparing all the products they offer, the rank of algorithmic sellers and Prime
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sellers on the New Offers page tend to be significantly higher than that of non-algorithmic sellers and

non-Prime sellers. Note that neither CDF goes to 100% because there are cases where sellers do not

appear in the top 20 list.

Taken together, my results show that algorithmic sellers exhibit significantly different

characteristics than non-algorithmic sellers: they sell fewer unique products, but in the products

where they do compete, they participate in the marketplace for longer periods of time, and they

acquire significantly larger amounts of positive feedback (suggesting they may have higher sales

volumes). My results also show that Prime sellers usually outperform non-Prime sellers, in terms

of quantity and quality of feedback, as well as rank in the seller list. Overall, Prime sellers tend to

exhibit similar characteristics to algorithmic sellers, although not always.

4.5.2 Competition

Next, I move on to examining the dynamics of Amazon Marketplace. First, I look into the

competition that each seller type faces in the top 20 offers. Next, I look into price changes for each

seller/product pair, followed by price and product changes in the Buy Box. Finally, I compare the

frequency of different types of sellers winning the Buy Box.

Intra- and Inter-type Competition. I begin by looking at the competition between

sellers of the same and different types. Figure 4.23 plots how many sellers of the same type I

observe for each product. There are fewer algorithmic and Prime sellers overall in my dataset, and

consequently there tend to be fewer algorithmic and Prime sellers per product. For example, 2.6%

of products do not have a Prime seller, while 58% have between one and five (inclusive). Similarly,

10.7% of products have no algorithmic sellers, while 72.6% have between one and five (inclusive).

In contrast, almost all products are available from a number of non-algorithmic, non-Prime sellers.

The results in Figure 4.23 reveal an interesting facet about the nature of competition in

Amazon Marketplace. Amazon’s website provides a filter that customers can select to only view

products and offers from Prime sellers. Prime members are likely to engage this filter often, as it

allows them to quickly find products that are eligible for free two-day shipping. This positions Prime

sellers at a significant advantage, since 58% of the time there are at most five Prime sellers for a

product, compared to 11 non-Prime sellers. Given that over half of Amazon’s customer base are now

Prime members [166], this effectively means that Prime sellers have much less competition with

respect to a large and lucrative segment of Amazon’s customer base.

Figure 4.23 also supports my arguments explaining some of the observed differences
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between Prime sellers and algorithmic sellers. Prime sellers do not need to compete with the entire

space of algorithmic sellers, only with the 5% of Prime sellers who also use algorithmic pricing.

Since such a small fraction of their competition uses algorithmic pricing, it is possible that some

Prime sellers are not incentivized to employ algorithmic pricing techniques because it does not confer

an appreciable competitive advantage.

Price Changes. Next, Figure 4.24 shows the distribution of number of price changes

per seller/product pair. I observe that for non-algorithmic and non-Prime sellers, the price never

changes for 71% of seller/product pairs. This suggests that either there is no competitive pressure to

instigate changes, or these sellers are simply unsophisticated and unresponsive.

However, if I examine the algorithmic sellers, I observe a very different distribution.

Seller/product pairs with at least one price change are more common than not,10 and there is a long

tail of products whose prices change 100 or even 1000 times. I also observe that Prime sellers

frequently change prices, although not as much as algorithmic sellers.

Buy Box. Next, I examine the impact of algorithmic sellers and Prime sellers on the

Buy Box. Figures 4.25 and 4.26 compare the number of seller and price changes I observe in Buy

Boxes for products that have algorithmic sellers and Prime sellers, and products that do not. As

expected, products with algorithmic sellers experience many more price and seller changes in the

Buy Box: for example, 20% of products without algorithmic sellers have zero price changes, versus

only 2% for products with algorithmic sellers. Unfortunately, this exposes customers to a great deal
10Readers may notice that the number of price changes for algorithmic sellers in Figure 4.24 goes below 20, which

is the change threshold I set to detect those algorithmic sellers. However, this plot includes all the products sold by the

algorithmic sellers, some of which have <20 changes during my crawl.
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of volatility, which they may perceive to be confusing and undesirable [18]. On the other hand, Prime

sellers have a less disturbing effect on the Buy Box. This concurs with my observation that only 5%

of Prime sellers use algorithmic pricing, thus facilitating more stable prices.

Although products with algorithmic sellers tend to have more dynamic Buy Boxes, this

does not necessarily mean that algorithmic sellers are more likely to actually win the Buy Box.

To assess this, I examine which types of sellers are more successful at winning the Buy Box in

Figure 4.27. I find that algorithmic sellers are indeed more likely to win the Buy Box at all ranks

except for the top one, which is won more by non-algorihmic and Prime sellers. Given the importance

of winning the Buy Box, this result is quite interesting: as shown in Figures 4.12 and 4.13, algorithmic

sellers tend to set their prices greater than or equal to the lowest price for a product. However, even

though algorithmic sellers do not offer the lowest prices, they manage to win the Buy Box anyway

due to other attributes like positive feedback.

4.5.3 Amazon as a Seller

Given Amazon’s dual role as merchant and host of the marketplace, it makes sense to

examine their role as a seller separately. Table 4.3 shows the percentage of best-selling products that

are sold by Amazon. “Overall” means that Amazon sold the product at some point during my crawls,

while “Each Crawl” is the average percentage of products sold by Amazon during each snapshot.

Although Amazon’s for-sale offerings do change over time, they still dominate the market, offering

greater than 72% of all best-selling products at any given time.

Besides offering an enormous number of products, Amazon is also known for their low

prices. To demonstrate this, I plot Figure 4.28, which shows the the rank of Amazon as a seller on

the New Offers page for every product in each crawl. For this analysis, I divide products into four

categories: 1) products with at least one algorthmic seller other than Amazon; 2) products where

Amazon is the only algorithmic seller; 3) products with at least one Prime seller other than Amazon;

and 4) products where Amazon is the only Prime seller. Note that categories [1, 2] and [3, 4] are

mutually exclusive, but other pairings are not. Also recall that, as I observed in Figure 4.7, the seller

list is roughly ordered from least-to-highest price.

Overall, I observe that Amazon ranks highly for almost all products they sell. However, if

I compare the products that have sellers doing algorithmic pricing to products without such sellers, I

see a dramatic difference. In products with algorithmic sellers, I see that Amazon ranks in the top

5 sellers 90% of the time; in products without such sellers, I see this percentage increases to 97%.
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mic and Prime sellers.

Prime sellers are as effective as algortithmic sellers in disrupting Amazon’s contention for the top

rank. Thus, even Amazon tends to be ranked lower for products where other algorithmic sellers and

Prime sellers are active. Non-Prime sellers have the least impact on Amazon’s rank.

4.6 Simulations

So far, I have successfully classified sellers into two discrete types: algorithmic sellers and

non-algorithmic sellers. I then compared these two types of sellers on various explicit metrics in

§ 4.5, such as inventory size, lifespan, feedback, etc.

In this section, I quantify a seller’s performance on Amazon Marketplace using two metrics:

checkouts and revenue. Since I cannot measure these quantities directly, I use simulations that are

driven by my real-world data to estimate them. I begin by describing the methodology behind my

simulations, and then analyze results. I find that the distribution of revenue is highly skewed in favor

of algorithmic sellers, and that Amazon in particular is in a class of its own.

I conclude the section by using simulations to examine what it would take for sellers who

Algorithmic Non-Algorithmic

Overall 72% 73%

Each Crawl 62% 63%

Table 4.3: Percentage of products with Amazon as one of the listed sellers.
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do not win the Buy Box in my real-world data to “change their fate” and win the Buy Box. This

simulation is motivated by my observation that winning the Buy Box is crucial for sellers to obtain

checkouts and revenue. Unfortunately, I find that most sellers cannot win the Buy Box even if they

try, and that the minority of sellers who could potentially win the Buy Box would need to lower their

prices drastically in order to do so.

4.6.1 Methodology

I begin by attempting to simulate the number of checkouts and total revenue earned by

sellers on Amazon Marketplace. For the purposes of this discussion, I define a “checkout” to mean

that a customer adds a specific product offered by a specific seller to their shopping cart and then

purchases it. Revenue simply refers to the amount in dollars earned by a seller when a given product

is checked out. Note that each seller may have their own list price for a given product (which I draw

from my crawled data), and that revenue per product includes any associated shipping costs (since

Amazon’s interface lumps product price and shipping cost together). Furthermore, I make no attempt

to subtract Amazon’s listing fees, commissions, etc. from the revenue earned by third-party sellers.

I examine checkouts and revenue separately because sellers and products have vastly

different properties on Amazon Marketplace. For example, a seller that offers 1,000 products may

amass more checkouts than a seller that only offers one product, simply due to greater scale. However,

the seller with one product could potentially earn more revenue, if that single product is an extremely

high-priced item. Rather than try to develop a single metric that takes all of these factors into account,

I opt to examine checkouts and revenue separately.

Unfortunately, my crawled data does not include data about product purchases, so I cannot

directly measure checkouts or revenue. Instead, I estimate the number of checkouts and revenue that

each seller will amass over time by simulating the behavior of customers. Specifically, I assume

that in each time epoch (i.e., 25 minute interval), each product in my crawled data is visited and

purchased by one customer. In other words, I assume each product in my dataset is purchased at a

constant rate over time, and that the rate for all products is equal. Although I could assume more

than one purchase per epoch per product, this would not impact the results of the simulation since

the increased purchase rates would uniformly impact all sellers.

Buyer Strategies. The vast majority of products in my dataset are offered by multiple

sellers, which raises an important question: during each epoch, which seller does my simulated

customer purchase from? Since I do not know what customers’ actual purchasing strategies are, I
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simulate four different strategies:

1. Always Lowest: The customer always purchases the product from the seller with the lowest

price.

2. Always Buy Box: The customer always purchases the product from the seller in the Buy Box.

3. 82/18 Lowest: The customer purchases the product from the seller in the Buy Box with 0.82

probability, and from the lowest priced seller with 0.18 probability. Note that the lowest priced

seller may also be the occupant of the Buy Box.

4. 82/18 Weighted: The customer purchases the product from the seller in the Buy Box with

0.82 probability. The remaining 0.18 probability is divided amongst all sellers in a weighted

manner based on price sorted from lowest to highest, i.e., the lowest price seller receives the

most probability, the second lowest receives the second most probability, and so on.

The “Always Lowest” and “Always Buy Box” strategies represent very simple, straightforward

models of customer behavior. In contrast, the “82/18” models are more realistic: available evidence

suggests that customers on Amazon purchase from the seller in the Buy Box 82% of the time [177],

which motivates my models. Arguably, the “82/18 Weighted” strategy is most realistic, since it takes

evidence of real Buy Box behavior into account [177] and simulates a pseudo-rational customer that

prefers to save money, but may pay higher prices for exogenous reasons (e.g., faster shipping times

or better seller feedback scores).

Execution. To execute my simulations, I rely on my crawled data. For each product

in each epoch, I calculate 1) the expected checkout probability for each seller and 2) the expected

revenue for each seller. Expected revenue for a seller is simply their offer price for the item times

their checkout probability. I iterate over all product epochs and sum the checkout probabilities and

revenue for each seller. Finally, I normalize the checkout probability for each seller by dividing it by

that sellers total number product epochs (i.e., I calculate the average checkout probability for each

seller). I execute this process once for each of my customer strategies, for a total of four simulations.

Overall, my simulations cover more than 1.39 million product epochs.

Limitations. Admittedly, my customer behavior models are simplistic. First, as noted

above, I make the simplifying assumption that all products in my dataset are puchased at equivalent

rates. This is clearly untrue: Amazon presents a “Best Sellers Rank” for many products on their

website that reveals how well the product sells relative to other similar products. Unfortunately, this
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data is too coarse to use for refining my simulations, since I cannot use it to compare the sales of

products in different categories (e.g., a book versus a shovel), and the ordinal ranks do not reveal the

actual sales gaps between products (i.e., it is not clear how much more a #1 rank product sells than a

#2 rank product).

Second, I assume that the purchase rates for products are constant over time. Again,

this is a simplifying assumption: it is likely that products sell more rapidly during daylight hours

when people are awake, and perhaps on weekends when they have more time to browse Amazon

Marketplace. I do not have any available data to help me quantify these effects, and thus I make no

attempt to incorporate them into my models.

Ultimately, the simulation results I present in this section are meant to highlight broad

trends on Amazon Marketplace, including the relative advantages gained by algorithmic sellers, and

the dominant position of Amazon itself. I make no claims to specificity, i.e., the number of checkouts

and revenue that I estimate for a given seller almost certainly do not represent the precise quantities

earned by the seller in reality.

4.6.2 Simulation Results

Figures 4.29 and 4.30 show the distributions of checkouts and revenue per seller, respec-

tively, in my simulations. Each line shows the distribution under a different model of customer

behavior.

The first interesting feature of Figures 4.29 and 4.30 is the number of sellers who receive
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zero checkouts and revenue. By design, this quantity is highly model-dependent. The “Always

Lowest”, “Always Buy Box”, and “82/18 Lowest” models are highly restrictive, since most sellers in

my dataset never obtain the Buy Box or offer the lowest price for a product. Under the “Always Buy

Box” model, 70% of sellers amass zero clicks and revenue, while under the slightly-less restrictive

“Always Lowest” model 61% of sellers amass zero clicks and revenue. In contrast, under the “82/18

Weighted” model, all sellers have some probability of being selected by a customer (even if those

probabilities are very small for the majority of sellers).

A second important observation from Figures 4.29 and 4.30 is how quickly the models

converge. With respect to checkouts, in three of the models ⇠93% of sellers have 0.2 probability

of acquiring checkouts (on average). The exception is the “Always Lowest” model, in which 80% of

sellers have 0.2 probability of acquiring checkouts. Similarly, ⇠95% of sellers earn $10,000 or

less, irrespective of the chosen model.

The final interesting facet of Figures 4.29 and 4.30 is how dramatically checkouts and

revenue are skewed towards a small subset of sellers. For example, 78–87% of sellers earn less than

$1,000 in revenue over the course of my simulation, depending on the customer model. The top three

sellers in terms of earnings each make more than the bottom 87% of sellers combined. Amazon itself

earns the most revenue in all of my simulations by two orders of magnitude, due the fact that it offers

more products for sale than any other seller, plus it can charge more per product than competitors

and yet still win the Buy Box in a majority of cases.

I caution that the results in Figure 4.30 do not necessarily mean that the majority of sellers

on Amazon are not profitable. I do not know seller’s profit margins, fixed overhead costs, or sales

volumes, and thus cannot draw conclusions about profitability. Rather, the results in Figure 4.30

simply highlight the disparity in earnings potential between sellers on Amazon Marketplace.

Checkouts. Next, I take a closer look at checkouts per seller by separating algorithmic

from non-algorithmic sellers. Figure 4.31 shows the percentage of checkouts per seller for algorithmic

and non-algorithmic sellers under all four of my customer purchase models. In these plots, each dot

is a different seller; I highlight Amazon using an “⇥”.

Under three of the strategies (excepting “Always Lowest”), algorithmic sellers amass more

checkouts than non-algorithmic sellers. In contrast, Figure 4.31a (the “Always Lowest” model) rein-

forces my finding that algorithmic sellers do not necessarily compete on price. Instead, algorithmic

sellers appear to be exploiting the behavior of Amazon users to their advantage: since 82% of users

purchase directly from the Buy Box, algorithmic sellers focus on winning the Buy Box without
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Figure 4.31: Percentage of checkouts per seller for algorithmic and non-algorithmic sellers, under

four different models of customer behavior.

always offering the lowest prices. Recall that in Figures 4.12 and 4.13, I observe that algorithmic

sellers tend to set prices that are higher than the target price for a given product, and yet as seen

in Figure 4.27, algorithmic sellers are more adapt at winning the Buy Box than other sellers. This

nuance is best exemplified by Amazon itself, who has 0.9 probability (on average) of acquiring

checkouts under the “Always Buy Box” model, but only 0.3 probability under the “Always Lowest”

model. Overall, I observe that the relative advantage held by algorithmic sellers is largest under the

“Always Buy Box” model, and less so under the “82/18” models.

Revenue. Next, I examine revenue per seller for algorithmic and non-algorithmic

sellers in Figure 4.32. Unsurprisingly, algorithmic sellers tend to earn at least an order of magnitude

more revenue than non-algorithmic sellers, due to the greater number of checkouts they amass. This

observation is even true under the “Always Lowest” model (Figure 4.32a), indicating that algorithmic
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Figure 4.32: Revenue per seller for algorithmic and non-algorithmic sellers, under four different

models of customer behavior.

sellers still earn more revenue even with relatively fewer checkouts.

By far, Amazon itself earns the most revenue, regardless of customer purchasing model.

As I note earlier, this is due to a combination of factors, including the large number of products they

offer, relatively higher prices than competitors, and the ability to consistently win the Buy Box.

My simulation results highlight the impact of Amazon’s design choices when constructing

their marketplace. Recall that Amazon’s probability of acquiring checkouts reduces from 0.9 under

the “Always Buy Box” model to 0.3 under the “Always Lowest” model. This translates to a $20

million reduction in revenue for Amazon in my simulations. In other words, if Amazon were to

always place the lowest priced offer into the Buy Box (instead of their current opaque algorithm),

they would lose a large amount of revenue11. This might force Amazon to change their pricing

11Note that in my similuations, I do include commissions from sales by third-party sellers in Amazon’s revenue total.
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strategies, by lowering their offer prices and accepting less revenue per item, but more revenue

overall through increased sales volume.

4.6.3 Breaking Into the Buy Box

With the majority of buyers purchasing directly from the Buy Box, it is imperitive for

every seller to win the Buy Box as frequently as possible. However, as I show, the Buy Box tends to

be dominated by a subset of sellers who are consequently able to capture a disproportionately large

fraction of all checkouts and revenue. This raises an interesting hypothetical question: what would it

take for sellers who are currently losing the Buy Box to win it?

In this section, I investigate if it is possible for a seller to win the Buy Box for a given

product by changing their offer price (and if so, by how much their offer price must change). Recall

that in § 4.3, I find that some of the features that influence the Buy Box algorithm are not directly

under sellers’ control. For example, a seller cannot choose to suddenly have large quantities of high-

quality feedback. However, product price is the most important feature for the Buy Box algorithm,

and prices are directly set by sellers.

Sniping. To investigate the impact of price changes on the Buy Box, I again use

data-driven simulations. Specifically, I assume that a seller wants to win the Buy Box for a specific

product, so they change their price right before Amazon calculates the Buy Box occupant for the

subsequent time epoch. I refer to this practice as “sniping”, since it does not give other sellers the

opportunity to react to the sudden price change before the new Buy Box occupant is chosen. Sniping

makes my simulation tractable, since otherwise I would also need to account for the reactions of

other (algorithmic) sellers in response to the change of the product’s target price.

Based on this scenario, I conduct simulations using the following two-step methodology.

First, I train a linear logistic regression classifier on all the seller features listed in § 4.3. The classifier

learns a decision boundary that best separates sellers who win the Buy Box from sellers who lose the

Buy Box. Second, I try to determine the new price at which each losing seller can win the Buy Box

for each product epoch in my dataset. To win the Buy Box, a losing seller must change their price

such that it places them at a greater positive distance to the decision boundary than the existing Buy

Box winner (i.e., the winner I observe in my data). I determine the new “winning” price for each

Thus, although Amazon may lose revenue from direct sales, they may make up the shortfall through higher commission

revenue.
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Figure 4.34: Price change required for sellers to

win the Buy Box, relative to three baselines.

seller by running a binary search between $0.01 (i.e., the minimum amount that a product can be

listed for) and the original price offered by the seller.

Validation. The logistic regression classifier achieves 61% accuracy for predicting the

ground-truth Buy Box winners12. Figure 4.33 shows the signed distance to the hyperplane for all

sellers in all epochs in my dataset. I observe some false negatives, i.e., sellers that won the Buy Box

but are predicted to have negative distance, and false positives, i.e., sellers that lost but are predicted

to have positive distance.

To mitigate the impact of false positives and negatives on my simulations, I only simulate

price changes in product epochs where the classifier correctly predicts the outcome for all sellers.

This filter leaves me with 111,932 product epochs to analyze.

Results. In total, I run the sniping simulation for 1.5 million <

product, seller, epoch > triples, which covers 5,822 unique sellers. This includes 257 algorithmic

sellers (out of 543 total).

Of the 5,822 sellers that attempt to snipe the Buy Box, a mere 883 were successful at least

once. These 883 sellers included 107 algorithmic sellers. This result paints a stark picture of the

competitive landscape on Amazon Marketplace: even if many sellers drop their prices to $0.01, they

still cannot win the Buy Box due to factors that may be beyond their control.

Figure 4.34 plots the price changes (relative to different baselines) that the 883 successful

12For 61% of all product epochs, the classifier returns the highest probability for the correct Buy Box winner. While

the classifier’s accuracy for classifying Buy Box winners and losers is 69% and 81% respectively, these numbers are

misleading since two (or more) sellers can be classified as Buy Box winners for the same epoch.
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snipers had to incur to win the Buy Box. In 56% of successful sniping attempts, the seller would need

to decrease their offer price by 25% or less relative to their original offer price. This corresponds

to an 11% price reduction relative to the current Buy Box occupant’s price. Note that in 11% of

cases, the sniping seller can actually increase their offer price above the Buy Box occupant’s price

to win the Buy Box, which suggests that there are opportunities for some sellers to engage in more

aggressive dynamic pricing tactics.

Whether the sniping strategy is viable for sellers in practice is unknown. I do not have data

on seller’s profit margins, and it is unclear whether each seller’s business would be sustainable if they

were forced to accept large price reductions in exchange for winning the Buy Box. In some cases, I

find that sellers would need to cut their prices by close to 100%, which would clearly lead to selling

products at below-cost.

4.7 Summary

In this chapter, I took the first steps towards detecting and quantifying sellers using

algorithmic pricing on Amazon Marketplace. I collected large-scale data on products and sellers

on Amazon Marketplace, and I make my code and data available to the research community.13 I

found that algorithmic sellers using a specific range of strategies can be detecting using a target price

time series, and I identify over 500 such sellers in my data set. I observe cases where algorithmic

sellers change prices tens or even hundreds of times per day, which would be difficult for a human to

maintain over time—especially one attempting to manage many products simultaneously—but is

trivially automated.

My findings illustrate the power of algorithmic pricing in online marketplaces. Sellers I

identified as using algorithmic pricing receive more feedback and win the Buy Box more frequently.

My data-driven simulations suggest that algorithmic sellers have higher sales volumes and thus

more revenue than non-algorithmic sellers, under a variety of different customer purchasing models.

Clearly, the existence of cost-effective, user-friendly automation platforms like Sellery and Feedvisor

is a win for sellers, especially smaller merchants who lack a dedicated programming staff.

However, the introduction of algorithmic pricing makes the sales competition extremely

challenging for non-algorithmic sellers. In addition, automating price changes opens the door

to intentional and unintentional market distortions. Finally, high pricing dynamics may confuse

customers during online shopping activities.
13Available at http://personalization.ccs.neu.edu

76

http://personalization.ccs.neu.edu


Chapter 5

Impact of Gender on Hiring Sites

The main goal of this study is to investigate if ranking bias or unfairness, with respect to

gender, exist in the ranking algorithms used by major online hiring websites. Furthermore, I explore

whether there exist alternative ranking methods that can mitigate the inequalities present in search

results on these websites.

I begin this chapter by introducing the websites covered in this study, resume search engines

in general, and the scope of this work in §5.1. In §5.2, I describe my data collection methodology,

and the specific candidate-level variables I extract from the data. In §5.3, I explore the ranking bias

and unfairness exhibited by the ranking algorithms, and investigate whether these issues are caused

by explicit or implicit use of gender as a feature. Based on my findings, I propose two alternative

ranking methods that each obey a different fairness constraint in §5.4. Finally, I summarize this study

in §5.5.

5.1 Background

In this section, I discuss search engines in general, and the three specific websites that

are the focus of my study. I begin by discussing resume search engines at a high-level, and which

specific aspects of the information retrieval process I am able to examine in this study. Next, I present

both the candidates’ and the recruiters’ perspective of each hiring website to highlight the similarities

between the websites, as well as salient differences in their resume search engines.
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(a) Indeed

(b) Monster

Figure 5.1: Screenshots of search results on Indeed and Monster when searching for a “Software

Engineer” near New York City.
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5.1.1 Resume Search Engines

In this study, I examine the resume search engines provided to recruiters by major hiring

websites. Before I describe the specific hiring sites that I target in this study, it is instructive to first

describe these search engines at a high-level, as this impacts what I am able to investigate.

Information Retrieval (IR) systems are designed to return relevant information from a

corpus of data in response to queries from users. Perhaps the most familiar example is Google Search,

which accepts free-text queries and returns links to websites from a crawled corpus of webpages.1

The kinds of queries that a system accepts, the contents of the corpus, and the definition of relevancy

all vary, depending on any given system’s context.

Here, I examine resume search engines, which are designed for recruiters who are looking

to identify and recruit new employees. In this case, the corpus contains resumes and personal profiles

uploaded by prospective candidates seeking employment. Recruiters query by entering a free-text job

title, but they may also add filters to further refine their search, e.g., years of experience, minimum

educational level, etc. The resume search engine returns a ranked lists of candidates that the system

judges to be relevant to the queried job title, subject to any specified filters. Figure 5.1 shows

examples of search results from Indeed and Monster.

Behind the scenes, three processes determine the composition and order of search results

produced by IR systems.

1. The items in the corpus (i.e., candidates and resumes) restrict what results can possibly be

returned by the system.

2. The relevancy metric determines which items the IR system judges are relevant to a given

query (i.e., job title).

3. The ranking algorithm determines the ordering of the relevant items that are displayed to the

user (i.e., a recruiter).

In practice, process (2) and (3) may be implemented by a single algorithm: all items in the corpus

are ranked in response to a query, and the top-k are returned to the user in that order. However,

conceptually, determining relevancy and order can be separated.

My purpose in this study is to examine the results returned by resume search engines

through the lens of gender. For example, do female candidates tend to be ranked lower than equally

qualified male candidates? In practice, all three of the processes outlined above can impact the

1This is a gross simplification of how Google Search actually works, but it is still useful as a high-level example.
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composition and order of search results with respect to gender [114]. The population in the corpus

determines how many men and women are available overall, so if, for instance, women use hiring

websites less frequently than men for some exogenous reason, then the search results may end up

being primarily composed of men. Similarly, if the relevancy metric or ranking algorithm heavily

weights features that are associated with male candidates, then the search results may include a

disproportionately large number of male candidates, and/or show men at higher ranks.

Scope of my Work. In this study, I focus on process (3), the ranking of candidates.

Although process (1) and (2) are interesting, I cannot critically examine them because there is no way

for me to enumerate all candidates in a hiring website’s corpus. Without this information as a baseline,

I cannot investigate things like gender skew in the relevancy metric (i.e., returning more candidates

of a specific gender than would be expected given the overall composition of the population in the

corpus). As I describe below, what I can crawl are search results, which does enable me to investigate

the relationship between gender and rank. Thus, I do not focus on the composition of search results

(i.e., which candidates are deemed relevant), but on ranking (i.e., how are the relevant candidates

ordered).

5.1.2 Hiring Websites

I chose three hiring sites to examine in this study: Indeed, Monster, and CareerBuilder. I

chose these sites for several reasons. First, they are three of the most popular employment websites

in the U. S., according to the Alexa ranking [17] (along with LinkedIn and Glassdoor). Indeed is

the second highest-traffic job search site in the U. S. behind LinkedIn. It serves 200 million unique

visitors per month and 16 million job postings [101]. Monster claims to have 29 resume uploads,

7900 job searches, and 2800 job views per minute [133], while CareerBuilder claims to have millions

of candidate visits per month and job listings from thousands of employers [45].

Second, all three sites provide economical access to their resume search engine. Indeed

does not charge for access, while Monster and CareerBuilder charge $700 and $400 per month,

respectively (as of early 2016). This made it feasible for me to sign-up and collect data from these

sites. Contrast this to LinkedIn, which charges $9000 for access to its unrestricted recruiter tools.

Third, as I discuss next, all three sites have similar user interfaces for candidates and

recruiters. This makes the sites roughly comparable in terms of usability and features, which allows

me to contrast the output of the resume search engines across the sites.

Candidate’s Perspective. The three sites are very similar from a candidate’s perspec-
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tive. Before searching and applying for jobs, candidates must register for a free account, and possibly

fill out a personal profile and upload a resume. The amount of profile information that is mandatory

varies across the sites; on Monster, users must provide their name, location, educational attainment,

and previous job. In contrast, CareerBuilder allows users to leave their profile empty. However, all

three sites continuously remind users to upload more information, especially a resume, since the job

recommendation functionality on the sites depends on this information.

Once a candidate has created a profile, the sites give them two options for finding open

positions: keyword search and recommendations. All three sites have job search engines, and provide

filters for narrowing down the results (e.g., by location, skill requirements, etc.). The sites will also

recommend positions to candidates based on their profile and resume information, although the

specific algorithms used to generate recommendations are unknown. On all three sites, candidates

may apply to as many jobs as they wish.

Recruiter’s Perspective. At a high-level, all three sites offer similar capabilities for

companies and recruiters. Recruiters may post open positions and inspect candidates that apply.

Monster and CareerBuilder charge recruiters a per-listing fee to post jobs. Postings on Indeed are

free, but recruiters may “sponsor” their postings for a fee, which increases their rank in job search

results.

The three hiring sites also offer resume search engines that recruiters can use to proactively

identify candidates. Recruiters may specify a job title and filters, and the search engines return ranked

lists of candidates that match the given criteria. None of the sites allow recruiters to filter or order
search results by demographics (e.g., gender, ethnicity), but proxy variables exist in some cases

(e.g., years of experience as an indicator of age). By default, the search results are sorted by opaque

metrics (e.g., “most relevant”), although the recruiter may re-sort the list by objective metrics like

years of experience. Figure 5.1 shows the search interface on Indeed and Monster; the query term,

location, and filters are all shown in the left column of the page. CareerBuilder has a very similar

layout.

Search Result Format. Since the goal of my study is to examine the order of candidates

returned by resume search engines, I must discuss the specific implementation of resume search on

each hiring site. On all three sites, a recruiter must supply a job title and a geolocation to initiate

a search. By default, the search engine returns all relevant candidates within 25–50 miles of the

specified location.

On Indeed, resume search results display 50 candidates per page, up-to a maximum of
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Present On
Origin Feature Description I M C

Job Title Relevance Relevance of the searched job title to the candidate’s current job title X X X
Skills Relevance Relevance of the searched job title to the candidate’s skills X X ⇥
Education Level Education level of the candidate X X X
Job Popularity Popularity of the candidate’s current job title among all candidates returned for the searched job title X X X
Last Modified The recency of the candidate’s profile and resume X X X
Experience The experience of the candidate in years X X X
Relocate Whether the candidate is willing to relocate (binary) ⇥ X ⇥
Skills Popularity Popularity of the candidate’s skills among all candidates returned for the searched job title ⇥ X ⇥
Information Relevance Relevance of the searched job title to additional profile info X ⇥ ⇥
Bio Relevance Relevance of the searched job title to the candidate provided description of the working experience X ⇥ ⇥
Skills Match Whether the entire searched job title is present in the candidate’s skill set (binary) X ⇥ ⇥
Information Match Whether the entire searched job title is present in the candidate’s additional profile information X ⇥ ⇥

O
bs
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Bio Match Whether the entire searched job title is present in the candidate’s bio X ⇥ ⇥

Inferred Gender Probability of the candidate being male X X X

Table 5.1: Per-candidate features I extract from search results on Indeed, Monster, and CareerBuilder.

I infer the last feature, Gender, based on each candidate’s first name; other features are directly

observed. Note that not all features are present on all hiring websites.

5000 candidates per query. The results display each candidate’s name, current job title, and other

features shown in the “I” column in Table 5.1. Clicking on a candidate opens their full resume, and

there are no restrictions on how many resumes a recruiter may view. Figure 5.1a shows example

search results from Indeed.

Monster shows 20 candidates per page in resume search results, up-to a maximum of 1000

candidates per query. The results page displays each candidate’s name, current job title, and other

features shown in the “M” column in Table 5.1. Figure 5.1b highlights the information that is shown

for each candidate, and the pagination of results, on Monster. Clicking on a candidate opens their

resume, but recruiters may only view 100 resumes per month. Unlike Indeed and CareerBuilder,

Monster displays a relevancy score (between 0.0 and 10.0 with one decimal point of precision) next

to each candidate in search results, which corresponds to the default sort ordering of the search

results. It is unclear how the relevancy scores are calculated, and how Monster breaks ties between

candidates with identical scores.

CareerBuilder’s resume search engine shows 20–30 candidates per page, up-to a maximum

of 5000 candidates per query. The information displayed per candidate is a small subset of what is

shown on Indeed and Monster (see the “C” column in Table 5.1). CareerBuilder does not display

relevancy scores, and recruiters may only view 50 resumes per month.
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Category Job Titles

First or Mid Level Officials & Managers Marketing Manager, Business Development Manager, Casino Manager

Laborers Laborer

Office & Clerical Workers Technical Recruiter, Payroll Specialist

Operatives Truck Driver, Taxi Driver

Professionals Human Resources Specialist, Physical Therapist, Occupational Therapist

Registered Nurse, Pharmacist, Speech Language Pathologist,

Software Engineer, Network Engineer, Mechanical Engineer,

Electrical Engineer, Manufacturing Engineer, Accountant,

Financial Analyst, Auditor, Tax Manager, Corrections Officer,

Personal Trainer, Real Estate Agent

Sales Workers Cashier, Retail Sales

Service Workers Janitor, Bartender, Mail Carrier, Concierge, Call Center Director,

Customer Service and Support

Technicians Elevator Technician

Table 5.2: Job titles used in my queries, organized by EEOC category.

U. S. State Cities

Texas Austin

Iowa Des Moines

Wisconsin Madison, Milwaukee

Louisiana New Orleans

New York New York City, Buffalo

Nebraska Omaha

Utah Salt Lake City

California San Francisco, Stockton,

San Bernardino, Los Angeles

Missouri Springfield

Michigan Detroit

Ohio Toledo, Cleveland, Cincinnati

Tennessee Memphis

Illinois Chicago

Table 5.3: Cities used in

my queries.

5.2 Data Collection

In this section, I describe my data collection methodology, and the specific variables I

extract from the data.

Crawl. To collect data for this study, I use an automated web browser to search for

candidates on Indeed, Monster, and CareerBuilder. Intuitively, my crawler is designed to emulate

how a recruiter would search for candidates on these hiring websites. I ran queries for 35 job titles in

20 American cities (described below) on all three sites, and recorded the resulting lists of candidates.

On Indeed I recorded candidates’ resumes, but not on Monster or CareerBuilder (since they only

allow recruiters to view 100 resumes per month). All of my data was collected between May and

October 2016, and the crawling took about 2 months on each site. My crawler sent queries every 30

seconds to minimize my impact on each site, and my data collection was IRB approved.

Search Parameters. To obtain a broad sample of candidates, I ran queries for 35 job

titles in 20 cities. Table 5.2 lists my 35 job titles organized by Equal Employment Opportunity

Commission [70] category. I chose these job titles because 19 of them are the most commonly

searched job titles [47], while the remaining 16 do not require high-school-level education [41],

which adds diversity to my query pool. Table 5.3 shows the 20 cities I focus on, which were chosen

to give me broad geographic and demographic variety. I ultimately gathered 521,783, 265,172, and

67,580 candidates on Indeed, Monster, and CareerBuilder (respectively) after running the 35⇥ 20

queries on each site.
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Candidate Features. Next, I extract information about candidates who appeared in

the search results. I focus on three types of features: 1) profile data (e.g., experience, education

level, activity, etc.); 2) inferred gender; and 3) the rank of each candidate in search results for a

given query. Table 5.1 lists the features I am able to extract on each site. For example, Monster and

CareerBuilder do not have Information Relevance or Description Relevance, while Indeed does not

have Skill Popularity.

I normalize all features in Table 5.1 to be between 0 and 1 for consistency. Binary features,

such as Authorization, Relocate, and Skills Match, are converted to 0 or 1. For other features, I apply

the normalization procedures described below.

• Job Title Relevance and Skills Relevance refer to the normalized fraction of keywords in a

candidate’s current job title and self-reported list of skills that match the terms in my query.

For example, if I query for “software engineer” and a candidate’s current job title is “software

designer”, I would assign them a Job Title Relevance of 0.5. I convert all words to their root

form before computing the scores. Note that Monster allows candidates to enter three skills,

hence I use three separate features on that site. In contrast, candidates on Indeed may enter

as many skills as they wish, so I calculate the fraction of keyword matches on the aggregated

skill set.

• Education is normalized using the ordered list of education-levels provided by Monster. The

list contains “No Education”, “Some High School Coursework”, “High School or equivalent”,

. . . , “Bachelor’s Degree”, “Master’s Degree”, “Doctorate”, and “Professional”, from low to

high. I normalize each candidate’s education levels uniformly: 0 being no education, and

1 being professional. Candidates on CareerBuilder must select from the same education-

level list as those on Monster. Because Indeed allows free-text input of education-level (e.g.,

“ba”, “b.sc”, “be” all mean Bachelors degree), I parse the text and map it back to Monster’s

education-level list.

• Job Popularity and Skill Popularity encode the popularity of each candidate’s current job title

and skills. I normalize these features by applying min-max normalization on the popularity of

the current job title or skill, where popularity is computed across all candidates in a given list

of search results. For example, candidates with the most popular current job title would have

Job Popularity of 1.0.

• Last Modified and Experience encode a candidate’s resume modification time and years of

experience relative to all the other candidates in a given list of search results. For a given list,
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Figure 5.2: Inferred probability of being male for all candidates in my dataset.

I compute the Cumulative Density Function (CDF) of modification times/experience for all

candidates. Each candidate’s feature value is then their relative rank in the CDF. For example,

the candidate(s) with the most years of experience for a given query would have Experience of

1.0.

Inferring Gender. Since my goal is to examine resume search engines with respect to

gender, I need to label each candidate’s gender. However, none of the sites I focus on collect this

information. Instead, I infer each candidate’s gender based on their first name, which is a common

method to infer gender in Western societies [65, 74, 105, 122, 178].

In this work, I rely on the U. S. baby name dataset [171] to infer candidates’ gender.

Instead of treating gender as a binary variable, I assign a probability of being male to each candidate

based on the fraction of times their first name was assigned to a male baby in the name dataset. I

chose to represent gender as a probability since this corresponds to how a recruiter would perceive

a candidate’s gender. For example, a candidate named “John” is almost certainly male, while a

candidate named “Madison” is ambiguous.

Figure 5.2 shows the CDF of the probability of being male for all candidates on my dataset.

I see that only 8% of candidates have ambiguous gender (scores around 0.5), meaning that I can be

very confident in the vast majority of my gender labels. The plot also shows that the male/female

ratio is approximately 1:1 on all three sites.

Ethics. I was careful to conduct my study in an ethical manner. This study was IRB

approved. To protect the contextual privacy of candidates, I will not be releasing my crawled data.

Furthermore, I used technical means to limit the impact of my crawlers on the target websites, and at

no point did I contact candidates. In my controlled experiments (detailed in the next section), I only

uploaded two resumes at a time to the hiring sites, meaning I decreased the rank of other candidates
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by at most two. Although all three sites prohibit crawling in their terms of service, I believe my

study is acceptable under the norms that have been established by prior algorithm audit studies that

investigate civil rights issues [90, 162].

5.3 Analysis

In this section, I investigate the rankings of candidates produced by resume search engines

with respect to gender. I organize my analysis around three questions: first, do the resume search

engines exhibit ranking bias? Second, are the search engines fair, in the sense that candidates with

equivalent attributes are assigned adjacent ranks? Third, if the resume search engines do exhibit

ranking bias or unfairness with respect to gender, is this caused by the inclusion of gender as a feature,

or via some other feature that is a proxy for gender? These questions are motivated by the realization

that recruiters rely on resume search to actively recruit employees, the same way people rely on

Google to surface relevant links. If a ranking algorithm is influenced by demographic variables, this

might cause specific classes of candidates to consistently be ranked lower, thus harming their job

prospects.

Throughout this section, I examine the top 1000 candidates returned in response to my

queries. I do this for consistency, since Monster returns at most 1000 results per query, while Indeed

and CareerBuilder may return more. The top 1000 candidates covers the first 20 pages of results

returned by Indeed for a given query, all 50 pages from Monster, and the first 30-50 pages from

CareerBuilder (the number of candidates per page varies).

Also recall that in this paper, I use the terms “top” and “high” to refer to desirable ranks in

search results (e.g., rank 1), since this is the standard terminology used in IR literature [61, 104].

5.3.1 Ranking Bias

I begin by examining whether the search results returned by the three resume search

engines exhibit ranking bias. I define ranking bias as statistically significant differences in the
distributions of ranks assigned to the members of two classes. In my case, the two classes are

male and female candidates. Ranking bias is analogous to predictive bias in the context of predictive

algorithms [168], and it is a specific instance of the more general classification bias [107].

To identify ranking bias, I use the Mann-Whitney U (M-W U ) test to compare the distri-

bution of ranks for male and female candidates in a given list of search results [60]. The M-W U
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Figure 5.3: Recall of being female for candidates when searching for a “Software Engineer”. The

20 lines correspond to different cities. Lines below the diagonal mean that fewer female candidates

appear than expected, given the overall population of candidates. Lines above the diagonal indicate

the opposite, i.e., there are fewer male candidates than expected.

test is a nonparametric test of the null hypothesis that there is no tendency for ranks of one class

to be significantly different from the other. I use the M-W U test because it works on unbalanced

and discrete ranking data (unlike the Kolmogorov-Smirnov test). I omit search result lists where the

number of female or male candidates is less than 20, as the result of M-W U is not reliable when

samples are this small. Out of 35⇥ 20 = 700 samples on each hiring website, 648, 421, and 181 are

suitable for analysis on Indeed, Monster, and CareerBuilder, respectively. I also remove candidates

that have ambiguous gender (Probability of Being Male � 0.2 and  0.8); this eliminates 8% of

candidates in my dataset.

Table 5.4 shows the results of the M-W U tests on the search result samples in my dataset.

Each cell shows the percentage of samples across cities where the M-W U test returned p  0.05 for

a given job title and hiring website. For now, I focus on the columns showing test results computed

on the original search results returned by the hiring websites.

I observe that there are several job titles the exhibit many instances of significant ranking

bias. Most of these cases occur in blue-collar jobs (e.g., Truck Driver and Taxi Driver), engineering

professions (e.g., Software, Network, and Electrical), and pink-collar jobs (e.g., Human Resources

Specialist and Cashier). In other words, jobs that are historically gendered in the U. S. tend to exhibit

ranking bias on the three hiring websites I survey. Overall, 18.2%, 13.5%, and 18.2% of job title/city

pairs on Indeed, Monster, and CareerBuilder (respectively) show significant ranking bias.

To give a concrete example of ranking bias, I create recall plots such as Figure 5.3. To

calculate recall, I iterate from the first candidate (i.e., rank 1) to the last candidate in a given search
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Figure 5.4: Recall curves for “Software Engineer” in three cities on Monster. All three curves show

a discernable difference between the rank of female and male candidates, but this is not always

detected by the Mann-Whitney U test.

result list R. At rank i, I calculate a tuple (x
i

, y
i

) = (i/|R|, |R
f,i

|/|R
f

|), where |R| is the total

number of candidates in the list, and |R
f

| is the total number of female candidates in the list R. |R
f,i

|
is the number of female candidates observed between ranks 1 and i. If female and male candidates

are evenly distributed in the list, the resulting line is along the diagonal (marked with black); however,

if females are consistently ranked lower then the line will be below the diagonal.

As an illustrative example, Figure 5.3 shows the recall for candidates on each hiring

websites when I search for “Software Engineer”. Each red line corresponds to the search results

in a different city. In this case, I see that most of the lines are below the diagonal, meaning that

female candidates are under-represented in the search results relative to their overall percentage of

the candidate population. In short: female candidates appear towards the bottom of the search results.

The results in Figure 5.3c on CareerBuilder are very noisy; this occurs because CareerBuilder has

the smallest candidate population of the three websites I survey, so for many job title/city pairs there

are very few candidates. This leads to the abrupt changes in the plot lines.

On Indeed, 16 job titles out of 35 exhibit noticeable deviations from the diagonal, always

in the favor of men. These jobs include Janitors and Laborers; Truck Drivers; Network, Electrical,

and Software Engineers; Casino Manager; and Correction Officers. Similarly, on Monster, 12 job

titles show trends in favor of men. These jobs include Truck Drivers; Network, Electrical, and

Software Engineers; Laborers; and Corrections Officers. I observe similar trends on CareerBuilder

for Software Engineers, Tax Managers, Pharmacists, Laborers, and Corrections Officers.

My recall plots highlight an important limitation of the M-W U test: it only rejects the null

hypothesis when the recall line is significantly deviated from the diagonal line. Consider Figure 5.4,
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which shows the recall curve and p value for “Software Engineer” in New York City (NYC), Salt

Lake City (SLC), and Milwaukee (MKE) on Monster. I see that all three recall curves are similarly

below the diagonal line (completely for NYC, partially for SLC and MKE), yet the p values vary

dramatically. This demonstrates that there are even more search result lists in my dataset that exhibit

ranking bias than Table 5.4 suggests.

Discussion. My findings demonstrate that the search results for many job titles

consistently exhibit ranking bias across cities and across different hiring websites. In practice, this

means is that one class of candidates (almost always females) appear lower in search results than the

alternate class when recruiters search for these job titles.

However, just because the resume search engines that I have surveyed exhibit ranking bias,

does not necessarily mean that the algorithms are unfair: it is possible that all candidates from class

c
i

have stronger features (e.g., more years of experience and/or more education) than candidates from

class c
j

, which causes the ranking algorithm to place the c
i

candidates at higher positions. This issue

occurs because ranking bias is an uncontrolled metric, meaning it does not take candidate features

into account (beyond gender). I examine the fairness of the resume search engines in my study in the

next section.
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Indeed Monster CareerBuilder
Job Title Original Unbiased Neutral Original Unbiased Neutral Original Unbiased Neutral

Accountant 25.0 0.0 25.0 20.0 0.0 1.3 12.5 0.0 12.5

Auditor 10.0 0.0 25.0 0.0 0.0 0.5 0.0 0.0 0.0

Bartender 20.0 0.0 20.0 10.0 0.0 1.0 16.7 0.0 16.7

Business Development Manager 0.0 0.0 0.0 5.6 0.0 11.1 0.0 0.0 0.0

Call Center Director 30.0 0.0 25.0 – – – – – –

Cashier 15.0 0.0 15.0 10.0 0.0 0.8 42.1 0.0 47.4
Casino Manager 10.5 0.0 10.5 0.0 0.0 5.3 – – –

Concierge 5.6 0.0 11.1 9.1 0.0 0.5 0.0 0.0 0.0

Corrections Officer 25.0 0.0 20.0 0.0 0.0 2.1 – – –

Customer Service and Support 10.0 0.0 15.0 25.0 0.0 0.5 13.3 0.0 13.3

Electrical Engineer 27.8 0.0 27.8 25.0 0.0 7.0 – – –

Elevator Technician 0.0 0.0 0.0 – – – – – –

Financial Analyst 11.1 0.0 11.1 11.1 0.0 11.1 41.7 0.0 25.0
Human Resources Specialist 15.0 0.0 30.0 0.0 0.0 5.3 75.0 0.0 75.0
Janitor 10.0 0.0 15.0 10.0 0.0 0.5 0.0 0.0 0.0

Laborer 25.0 0.0 25.0 45.0 0.0 1.3 0.0 0.0 0.0

Mail Carrier 15.0 0.0 15.0 14.3 0.0 14.3 – – –

Manufacturing Engineer 30.0 0.0 15.0 0.0 0.0 3.8 – – –

Marketing Manager 10.5 0.0 15.8 5.0 0.0 0.5 25.0 0.0 20.0
Mechanical Engineer 21.1 0.0 21.1 0.0 0.0 3.5 – – –

Network Engineer 52.6 0.0 47.4 0.0 0.0 6.6 0.0 0.0 0.0

Occupational Therapist 12.5 0.0 12.5 0.0 0.0 12.5 – – –

Payroll Specialist 10.0 0.0 20.0 0.0 0.0 14.3 0.0 0.0 0.0

Personal Trainer 10.5 0.0 10.5 0.0 0.0 14.3 0.0 0.0 0.0

Pharmacist 40.0 0.0 45.0 0.0 0.0 4.0 0.0 0.0 0.0

Physical Therapist 20.0 0.0 20.0 16.7 0.0 16.7 – – –

Real Estate Agent 10.0 0.0 0.0 5.3 0.0 5.3 0.0 0.0 0.0

Registered Nurse 10.0 0.0 10.0 5.9 0.0 11.8 0.0 0.0 0.0

Retail Sales 10.0 0.0 15.0 60.0 0.0 0.5 30.8 0.0 30.8
Speech Language Pathologist 33.3 0.0 33.3 – – – – – –

Software Engineer 30.0 0.0 35.0 35.0 0.0 1.5 16.7 0.0 0.0

Tax Manager 10.0 0.0 10.0 0.0 0.0 1.1 0.0 0.0 0.0

Taxi Driver 33.3 0.0 33.3 0.0 0.0 33.3 – – –

Technical Recruiter 25.0 0.0 15.0 20.0 0.0 2.5 0.0 0.0 0.0

Truck Driver 20.0 0.0 20.0 14.3 0.0 14.3 50.0 0.0 0.0

Total Percentage 18.2 0.0 19.0 13.5 0.0 12.6 18.2 0.0 16.0

Table 5.4: Mann-Whitney U test on the rank of females and males in the top 1000 candidates per job

title. Each cell shows the percentage (%) of cities with p < 0.05 for a given job title on a given hiring

website. Cases where the percentage is �20% are bolded. I show results for the original search

results, as well as search results that have been re-ranked using my unbiased and neutral ranking

algorithms. Note that I skip samples when the number of female or male candidates is less than 20;

“–” marks instances where there are no cities with sufficiently large populations to test. I also remove

the 8% of candidates with ambiguous genders.
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5.3.2 Fairness

Next, I investigate whether the rankings of candidates produced by resume search engines

are fair with respect to gender. I define fairness as assigning adjacent ranks to candidates that
have the same observable features (e.g., experience and education), but different genders.

To investigate the fairness of the ranking algorithms, I use regression tests. My goal is to

examine the effect of gender on candidate’s rank while controlling for all other observable candidate

features. If the gender feature is significant and has a non-zero coefficient in the fitted model, this

indicates that the ranking algorithm in question is not fair, as candidates with equivalent features but

different genders are not assigned the same rank. In this section, I will focus on the top 1000 and top

100 candidates in search results, since the former covers all candidates, while the latter focuses on

the highly visible candidates that recruiters are likely to see [61, 158].

Model Specification. I adopt the Mixed Linear Model (MLM) for my regression tests.

I regress on individual candidates, specifying the model as

y = X��� +µµµ+ ✏✏✏,

where y is a vector of the responses (log2(rank) of each candidate, explained below). X is the

design matrix, and the predictors include observed features and probability of being male for each

candidate (see Table 5.1). ��� is the vector of fixed-effects parameters, including the global intercept.

µµµ is the vector of random-effects intercepts. In other words, each group (a.k.a. search results for a

specific job title and city) has a shared global fixed-effects intercept and an individual random-effects

intercept.

Choosing a model that has fixed and random effects is important, because it agrees with

two fundamental assumptions about my data:

1. Each hiring website has a single ranking algorithm for answering all queries, regardless of

query term and location. This corresponds to fixed effects (i.e., feature weights) regardless of

job title and location.

2. Candidates with identical features that appear in different search result lists may be assigned

dramatically different ranks. Moreover, job titles and cities are a sampled subset of the entire

population of candidates in the hiring websites’ corpus. This corresponds to random-effects

group intercepts that vary by job title and location.

The first assumption is reasonable because it is impractical for a hiring website to implement

a different ranking algorithm for an unbounded number of possible search terms. The second
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Figure 5.5: nDCG comparison of the predicted rankings R̂ produced by the mixed linear models

versus the original rankings R. These results were computed using the Original and Matched
candidates from my dataset.

assumption holds because the population of candidates, and their relative qualifications, varies

across locations and professions. For example, consider two male Software Engineer candidates

with identical qualifications that live in Mobile, AL and San Francisco, CA. The former candidate

may appear at a high rank in the Mobile search results, while the latter appears at a low rank San

Francisco, even though they have the same features, because the latter location has a larger population

of highly qualified candidates in this specific profession. In other words, equivalent X does not mean

equivalent y if the job title and/or location are different. The MLM uses the same fixed effects vector

� across all samples (corresponding to assumption 1), but different random effects intercepts µµµ per

sample (which permits variance across job titles and cities, corresponding to assumption 2).

For the dependent variable in my regressions, I use log2(rank). I use this transformation
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Dependent Variable: log2(rank)
Indeed Monster CareerBuilder

Top 1000 Top 100 Top 1000 Top 100 Top 1000 Top 100
Feature Original Matched Original Matched Original Matched Original Matched Original Matched Original Matched

Fixed Effect Intercept 7.125⇤⇤⇤ 7.281⇤⇤⇤ 4.803⇤⇤⇤ 4.826⇤⇤⇤ 6.991⇤⇤⇤ 7.461⇤⇤⇤ 5.938⇤⇤⇤ 6.275⇤⇤⇤ 4.47⇤⇤⇤ 5.528⇤⇤⇤ 4.129⇤⇤⇤ 4.601⇤⇤⇤

Job Title Relevance -1.196⇤⇤⇤ -0.783⇤⇤⇤ -0.518⇤⇤⇤ -0.295⇤⇤⇤ -1.628⇤⇤⇤ -1.449⇤⇤⇤ -1.3⇤⇤⇤ -1.199⇤⇤⇤ -1.57⇤⇤⇤ -1.522⇤⇤⇤ -1.258⇤⇤⇤ -1.204⇤⇤⇤

Skills Relevance (1) -0.14⇤⇤⇤ -0.275⇤⇤⇤ -0.051 -0.006 -0.268⇤⇤⇤ -0.065⇤⇤ -0.31⇤⇤⇤ -0.046

Skills Relevance (2) -0.143⇤⇤⇤ 0.002 -0.109⇤⇤⇤ 0.17⇤

Skills Relevance (3) -0.096⇤⇤⇤ 0.053 -0.108⇤⇤⇤ 0.151

Education level 0.086⇤⇤⇤ 0.117⇤⇤⇤ 0.042⇤⇤ 0.106⇤⇤⇤ -0.079⇤⇤⇤ -0.011 -0.061⇤ -0.009 -0.038⇤ -0.074⇤⇤ -0.027 -0.034

Job Popularity -0.084⇤⇤⇤ -0.098⇤⇤⇤ -0.115⇤⇤⇤ -0.184⇤⇤⇤ -0.163⇤⇤⇤ -0.177⇤⇤⇤ -0.004 0.009 -0.193⇤⇤⇤ -0.242⇤⇤⇤ -0.147⇤⇤⇤ -0.175⇤⇤⇤

Last Modified -2.02⇤⇤⇤ -1.631⇤⇤⇤ -2.053⇤⇤⇤ -1.738⇤⇤⇤ -0.203⇤⇤⇤ -0.213⇤⇤⇤ -0.197⇤⇤⇤ -0.202⇤⇤⇤ -0.139⇤⇤⇤ -0.109⇤⇤⇤ -0.149⇤⇤⇤ -0.181⇤⇤⇤

Experience 0.217⇤⇤⇤ 0.279⇤⇤⇤ 0.116⇤⇤⇤ 0.065⇤ -1.041⇤⇤⇤ -0.853⇤⇤⇤ -1.303⇤⇤⇤ -1.359⇤⇤⇤ -0.106⇤⇤⇤ -0.104⇤⇤⇤ -0.185⇤⇤⇤ -0.226⇤⇤⇤

Relocate -0.019⇤⇤⇤ -0.015 -0.021 -0.048

Skills Popularity (1) -0.08⇤⇤⇤ -0.099⇤⇤⇤ -0.048⇤⇤ -0.093⇤⇤

Skills Popularity (2) -0.086⇤⇤⇤ -0.103⇤⇤⇤ -0.062⇤⇤ -0.103⇤

Skills Popularity (3) -0.103⇤⇤⇤ -0.113⇤⇤⇤ -0.017 -0.018

Bio Relevance 0.046⇤⇤⇤ 0.073⇤⇤ 0.041 0.135

Information Relevance -0.32⇤⇤⇤ -0.251⇤⇤⇤ -0.255⇤⇤⇤ -0.134

Skills Match -0.034 0.066 -0.072 -0.313

Information Match -0.042⇤⇤ 0.037 -0.093⇤ -0.034

Bio Match -0.189 -0.086⇤⇤⇤ -0.262⇤⇤⇤ -0.36⇤⇤⇤

Random Effect (s.d.) 0.072 0.062 0.01 0.008 0.27 0.231 0.106 0.066 0.229 0.196 0.018 0.118

Prob. of Being Male -0.019⇤⇤⇤ -0.012⇤ -0.042⇤⇤⇤ -0.051⇤⇤ -0.043⇤⇤⇤ -0.025⇤⇤ -0.028⇤ -0.051⇤ -0.039⇤⇤ -0.02 -0.071⇤⇤⇤ -0.055*

Observations 521783 179630 67410 18630 265172 83862 50813 11836 67580 30502 28289 13205

Table 5.5: Estimated coefficients and standard deviation of mixed linear regressions on the top 1000

and top 100 Original and Matched candidates in search results from each hiring website, grouped by

city and job title. Significance level is unavailable for Random Effect. Note: ⇤p < 0.05; ⇤⇤p < 0.01;
⇤⇤⇤p < 0.001.

for two reasons:

• The log() function is monotonically increasing, which maintains the ordering of candidates

after the transformation.

• It prioritizes top-ranked candidates by giving them higher weight, while decaying the impor-

tance for lower-ranked candidates.

Logarithms have been found to be widely applicable in the IR literature. Empirical studies [61, 158],

backed up by eye-tracking surveys [12, 78, 82], have found that the probability of search result items

being clicked decays logarithmically. Similarly, log2() is used to calculate normalized Discount

Cumulative Gain (nDCG), which is a standard metric used to quantify the similarity of two search

result lists [102, 103]. By using logarithmic decay, nDCG affords higher weight to the top items in

the search result lists, since they are known to be of higher practical importance.

Matching. I analyze two populations of candidates in my regressions: the Original
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Top k Indeed Monster CareerBuilder
Candidates Gender Coef. Gender Coef. Gender Coef.

Top 2 -0.080⇤⇤ -0.032 0.008

Top 5 -0.072⇤ -0.062⇤ 0.006

Top 10 -0.023 -0.031 0.027

Top 20 -0.009 -0.056⇤ -0.023

Top 50 -0.036⇤ -0.047⇤⇤ -0.053⇤

Top 100 -0.042⇤⇤⇤ -0.028⇤ -0.071⇤⇤⇤

Top 200 -0.029⇤⇤ -0.026⇤⇤ -0.071⇤⇤⇤

Top 500 -0.022⇤⇤⇤ -0.040⇤⇤⇤ -0.055⇤⇤⇤

Top 1000 -0.019⇤⇤⇤ -0.043⇤⇤⇤ -0.039⇤⇤

Table 5.6: Estimated Probability of Being Male coefficient from mixed linear regressions as the

length of the search result list is varied. These results were computed using the Original candidates

from my dataset. Note: ⇤p < 0.05; ⇤⇤p < 0.01; ⇤⇤⇤p < 0.001.

population, which includes all candidates, and a Matched subset of candidates. The goal of matching

is to reduce selection bias in a dataset by creating a subsample that 1) includes a balanced population

(in my case, between male and female candidates) and 2) is representative of the overall dataset. This

is done by finding pairs of male and female candidates whose features are as similar as possible, but

differ along the examined variable (rank) [95].

To construct my matched subpopulation, I leverage the MatchIt software developed by

Ho et al. [96]. MatchIt implements several nonparametric matching methods (e.g., exact matching,

coarsened exact matching (CEM), nearest neighbor, etc.) that make no assumptions about the

relationship between rank and visible features, which gives me a way to control for unobserved

features, beyond what is visible in the search result data.

In this study I use the CEM method, which is a relaxed version of exact matching: the

feature values are binned, creating more flexibility to find matches.2 For categorical features (e.g.,

Searched Job Title, Searched City, Education, etc.), I set each category as a separate bin and use exact

matching. For Experience I set seven bins, specified in years of experience: 0–1, 1–5, 5–8, 8–10,

10–15, 15–20, and 20+. For Last Modified I set five bins: 1–7 days, 7–30 days, 30–90 days, 90–365

days, 1+ years.3 I chose to manually specify bins for these two continuous features so that each

2I tried to use exact matching, but it could only produce subsamples containing <1% of candidates. The fundamental

problem is that the feature-space in my dataset is large (I have many features, each of which has many possible values),

which makes it very difficult to find exactly matching pairs of candidates.
3I use seven and five bins for Experience and Last Modified when examining the top 1000 candidates. I reduce the

number of bins to four and three, respectively, when examining the top 100 candidates, to compensate for the reduced
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bin would correspond to a human-interpretable timerange. For the remaining continuous features,

I leverage the default binning algorithm in MatchIt. Tables 5.7 and 5.8 show the features I match

on each hiring website,4 as well as each feature’s type, the number of bins, and whether MatchIt’s

default binning was used.

Validation. Before regressing on the matched subpopulations, I must first verify that

they are large and representative. Tables 5.7 and 5.8 show the descriptive statistics of all candidates

in the top 1000 and top 100 populations, versus the corresponding matched subpopulations produced

by CEM for Indeed, Monster, and CareerBuilder, respectively. I make two key observations: first,

CEM identifies tens of thousands of matching pairs on each website (unlike exact matching), which

means the populations are large enough to analyze. Second, when I examine the difference in

means for the control features in the matched pairs, I observe that the differences are all close to

zero, which demonstrates that the matched pairs have extremely similar features. Furthermore,

the improvement to the mean difference is almost always >90%, which shows that the matched

subpopulation is substantially more balanced than the overall population. Taken together, these

observations demonstrate that my matched subpopulations are suitable for analysis.

Model Fitting. For each hiring website I fit four MLMs: two on the top 1000 candidates

in each search result list, and two on the top 100 candidates. For each top k, I fit models using

my Original candidates and the Matched subset of candidates. Negative coefficients in my model

signify effects with higher rank.5

I conduct the Variance Inflation Factors (VIF) test to remove multicollinearity before fitting

the models; all the variables remain after the test. I also give the correlation matrix in Table 5.9 for

the reader’s reference.

To assess how well the MLMs fit for my data, I evaluate their predictive power. To do this,

I treat the each model as a ranking algorithm: I input the ground-truth feature vectors of candidates

from a given search result list R into a fit model, which then outputs a predicted log ranking ŷ

(corresponding to a predicted ranking R̂). Next, I use the nDCG metric to compute the similarity

between R̂ and the original ranking R. nDCG is a standard metric used in the IR literature to

range of values for these features that I observe in the more restricted population.
4I do not include the Job Popularity and Skill Popularity features, as these are not directly observed from the candidate

information, but calculated by me using data from all candidates.
5Note that a smaller log

2

(rank) value translates to a higher and more desirable rank for a candidate, because

log

2

(rank) increases with rank.
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compare ranked lists [102, 103]. The DCG of a ranking R = [r1, r2, . . . , r
k

] is calculated as

DCG(R) = g(r1) +
kX

i=2

(g(r
i

)/ log2(i))

where g(r
i

) is the “gain” or score assigned to result r
i

. nDCG is defined as DCG(R̂)/DCG(R),

where R is the ideal ranking of the items in R̂. In my case, R is the original ranking produced by

a hiring site (i.e., I treat the original ranking as the baseline), and R̂ is a ranking predicted by the

model. An nDCG value of 1 indicates that the two rankings are identical. In essense, nDCG for rank

responses is analogous to R2 for continous responses and misclassification error for classification

problems.

Figure 5.5 shows the evaluation of the predictive power of the MLMs fit to my Original
and Matched candidates. I observe that 99%, 95%, and 73% of the nDCG scores are � 0.8 for top

1000 candidates when fit to the Original data on Indeed, Monster, and CareerBuilder, respectively.

For the Matched subsamples of top 1000 candidates, 99%, 99%, and 93% of the nDCG scores are

� 0.85 on these three websites. The nDCG scores are slightly lower for top 100 candidates: 60%

– 77% of the nDCG scores are � 0.8 across all three websites for the Original data, while 83% –

93% of the nDCG scores are � 0.85 across all three websites for Matched candidates. These results

demonstrates that my MLMs can reproduce most of the search results regardless of the underlying

population of candidates (top 1000 or 100, Original or Matched), which indicates that the models

are a good fit for my data.

Results. Table 5.5 shows the results of my twelve MLM regressions. I observe that the

majority of features have significant, negative effect on log rank on all three hiring sites, such as

Job Title Relevance, Job Popularity, and Last Modified. On Indeed, Last Modified has the largest

coefficient by far, which matches their documentation stating that they tend to rank candidates by the

time of their most recent resume update (from most to least recent) [100]. Interestingly, Education

Level and Experience have significant, positive effects on log rank on Indeed, which suggest that

there are more candidates with lower degrees and less experience in the top ranks (possibly newly

graduated students). In contrast, Monster and CareerBuilder both exhibit significant, negative effects

of Experience on log rank.

Overall, the sign of coefficients and their significance show remarkable consistency across

the models fit to different populations. There are only a few features that have a significant, negative

impact on log rank in the top 1000 populations, but not the top 100. Examples include Skill Relevance

(1) on Indeed, Job Popularity on Monster, and Education on CareerBuilder. Less common are cases
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where the Original and Matched populations disagree, such as Information Relevance on Indeed,

and Education on Monster.

Most importantly, I observe that the Probability of Being Male feature is significant and

negative in 11 of the 12 models. This indicates that men rank higher than women with equivalent

features, thus demonstrating that the ranking algorithms used by these three hiring websites are unfair

(according to my definition of fairness).

To further bolster my claims, I fit MLM regressions to the top k Original candidates on

each hiring website. I show the resulting Probability of Being Male coefficients and p-values in

Table 5.6. I see that the gender coefficient on each site is consistently significant and negative for

k � 50. Furthermore, the coefficients are negative (and sometimes significant) beginning at k = 2

on Indeed and Monster. These results demonstrate that the gender effects are robust to changes in k

beyond a low minimum floor, i.e., unfairness can be detected even in relatively small subsets of the

top candidates.

Discussion. At this point in my analysis, it is unclear why the ranking algorithms

exhibit unfairness. One possibility is that the hiring websites infer candidate’s gender (since they do

not directly ask candidates to disclose this information), and then use gender as a feature in their

algorithms. However, given the sensitivity surrounding issues of gender discrimination in hiring,

this possibility seems unlikely. Another possibility is that the ranking algorithms incorporate some

feature (or features) that is correlated with gender, but that I cannot observe in my search result

dataset (and thus cannot control). I delve into these questions in the next section.

97



CHAPTER 5. IMPACT OF GENDER ON HIRING SITES

Category Male Female

All 231001 233575

Matched 91336 88294

Unmatched 139665 145281

Discarded 0 0

(a) Sample Size for Indeed,

Top 1000

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.5176 0.4877 0.0299 0.4924 0.4925 -0.0002 99.4323

Job Title cat, 35, A 17.4159 14.3647 3.0512 16.0758 16.1012 -0.0254 99.1674

City cat, 20, A 9.6171 9.4842 0.1329 9.2912 9.2934 -0.0021 98.3945

Job Title Relevance num, 7, A 0.3004 0.2727 0.0277 0.2078 0.2078 0 100

Skills Relevance (1) num, 7, A 0.0496 0.0415 0.0081 0.0043 0.0043 0 100

Education cat, 10, A 0.4679 0.4627 0.0053 0.4301 0.4301 0 100

Last Modified num, 5, M 0.5073 0.5019 0.0054 0.5004 0.5007 -0.0003 94.4605

Experience num, 7, M 0.5173 0.5001 0.0172 0.4999 0.4993 0.0006 96.5701

Bio Relevance num, 7, A 0.135 0.114 0.0211 0.0244 0.0244 0 100

Information Relevance num, 7, A 0.3579 0.3501 0.0077 0.2444 0.2444 0 100

Skills Match cat, 2, A 0.0086 0.0075 0.0011 0.0004 0.0004 0 100

Information Match cat, 2, A 0.0239 0.0219 0.002 0.002 0.002 0 100

Bio Match cat, 2, A 0.0741 0.0919 -0.0178 0.0445 0.0445 0 100

Rank – 457.881 454.6293 3.2516 484.0105 480.9978 3.0128 7.346

(b) Balance Checking Statistics for Indeed, Top 1000

Category Male Female

All 112682 127754

Matched 40369 43493

Unmatched 72313 84261

Discarded 0 0

(c) Sample Size for Monster,

Top 1000

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.5408 0.5206 0.0201 0.5522 0.5521 0 99.8889

Job Title cat, 35, A 16.8625 14.6349 2.2276 17.9649 18.0011 -0.0361 98.3775

City cat, 20, A 9.8693 9.7387 0.1306 9.8414 9.838 0.0034 97.3949

Job Title Relevance num, 7, A 0.3377 0.3693 -0.0315 0.2174 0.2174 0 100

Skills Relevance (1) num, 7, A 0.1241 0.1492 -0.0251 0.0566 0.0566 0 100

Skills Relevance (2) num, 7, A 0.0847 0.0923 -0.0076 0.0213 0.0213 0 100

Skills Relevance (3) num, 7, A 0.0693 0.0747 -0.0054 0.0148 0.0148 0 100

Education cat, 12, A 0.5876 0.5811 0.0064 0.585 0.585 0 100

Last Modified num, 5, M 0.5103 0.517 -0.0067 0.5236 0.5242 -0.0006 90.7378

Experience num, 7, M 0.5248 0.4923 0.0326 0.507 0.505 0.0021 93.6805

Relocate cat, 2, A 0.6541 0.6109 0.0431 0.7054 0.7054 0 100

Rank – 384.7604 410.1525 -25.3921 448.9949 454.3637 -5.3688 78.8566

(d) Balance Checking Statistics for Monster, Top 1000

Category Male Female

All 30362 28762

Matched 16154 14348

Unmatched 14208 14414

Discarded 0 0

(e) Sample Size for Career-

Builder, Top 1000

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.4977 0.4759 0.0218 0.4908 0.4909 -0.0001 99.6468

Job Title cat, 35, A 15.6974 13.7541 1.9434 14.6425 14.6774 -0.0349 98.2032

City cat, 20, A 9.4957 9.1079 0.3878 9.3551 9.3538 0.0013 99.6755

Job Title Relevance num, 7, A 0.3798 0.3866 -0.0068 0.3259 0.3259 0 100

Education num, 7, A 0.4632 0.4039 0.0593 0.4672 0.4672 0 100

Last Modified num, 5, M 0.5004 0.503 -0.0026 0.4958 0.4971 -0.0013 51.2495

Experience num, 7, M 0.5416 0.5165 0.0251 0.5365 0.5351 0.0014 94.3952

Rank – 209.7027 247.7418 -38.0391 290.333 291.0539 -0.7208 98.105

(f) Balance Checking Statistics for CareerBuilder, Top 1000

Table 5.7: Coarsened Exact Matching statistics for all three hiring websites on the top 1000 candidates.

Note that Rank is not a feature in the matching procedure; I list it here to check the balance statistics.

The “Binning” column shows the type of each feature (categorical or numerical), how many bins

were used, and whether those bins where chosen Automatically by MatchIt or Manually by me.
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Category Male Female

All 29840 30012

Matched 9375 9255

Unmatched 20465 20757

Discarded 0 0

(a) Sample Size for Indeed,

Top 100

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.5126 0.4903 0.0223 0.4941 0.4951 -0.001 95.5994

Job Title cat, 35, A 17.9644 15.4478 2.5166 16.7918 16.9282 -0.1364 94.5795

City cat, 20, A 9.5852 9.431 0.1542 9.6072 9.5984 0.0089 94.2436

Job Title Relevance num, 7, A 0.4091 0.3923 0.0168 0.3211 0.3211 0 100

Skills Relevance (1) num, 7, A 0.0544 0.0475 0.0068 0.0054 0.0054 0 100

Education cat, 10, A 0.466 0.4784 -0.0123 0.4182 0.4182 0 100

Last Modified num, 3, M 0.3307 0.3345 -0.0038 0.29 0.2874 0.0027 30.6878

Experience num, 4, M 0.482 0.4683 0.0137 0.4331 0.4334 -0.0003 97.7444

Bio Relevance num, 7, A 0.1333 0.1118 0.0215 0.02 0.02 0 100

Information Relevance num, 7, A 0.3863 0.3897 -0.0034 0.2594 0.2594 0 100

Skills Match cat, 2, A 0.0109 0.0086 0.0023 0.0009 0.0009 0 100

Information Match cat, 2, A 0.0269 0.0227 0.0042 0.0023 0.0023 0 100

Bio Match cat, 2, A 0.0932 0.1161 -0.0229 0.0538 0.0538 0 100

Rank – 49.7075 50.2131 -0.5057 49.2912 50.6214 -1.3302 -163.0531

(b) Balance Checking Statistics for Indeed, Top 100

Category Male Female

All 20339 26183

Matched 5652 6184

Unmatched 14687 19999

Discarded 0 0

(c) Sample Size for Monster,

Top 100

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.5714 0.5518 0.0196 0.5667 0.5668 -0.0002 99.224

Job Title cat, 35, A 17.679 15.149 2.53 17.38 17.4438 -0.0638 97.4788

City cat, 20, A 9.7571 9.6203 0.1368 9.7278 9.7089 0.0189 86.1649

Job Title Relevance num, 7, A 0.5593 0.577 -0.0177 0.5244 0.5244 0 100

Skills Relevance (1) num, 7, A 0.1743 0.1813 -0.007 0.0963 0.0963 0 100

Skills Relevance (2) num, 7, A 0.1129 0.1083 0.0045 0.0319 0.0319 0 100

Skills Relevance (3) num, 7, A 0.0869 0.082 0.0049 0.0147 0.0147 0 100

Education cat, 12, A 0.6069 0.6091 -0.0022 0.6184 0.6184 0 100

Last Modified num, 3, M 0.5086 0.5198 -0.0112 0.5302 0.5326 -0.0024 78.8243

Experience num, 4, M 0.5735 0.5627 0.0108 0.5829 0.5799 0.003 71.8669

Relocate cat, 2, A 0.6545 0.6127 0.0418 0.716 0.716 0 100

Rank – 46.1663 46.7084 -0.5421 48.0163 49.7964 -1.78 -228.3505

(d) Balance Checking Statistics for Monster, Top 100

Category Male Female

All 11775 13161

Matched 6278 6927

Unmatched 5497 6234

Discarded 0 0

(e) Sample Size for Career-

Builder, Top 100

All Data Matched Data
Means Means Mean Means Means Mean Improvement

Feature Binning Male Female Diff Male Female Diff Mean Diff

distance – 0.5394 0.5149 0.0245 0.5333 0.5336 -0.0002 99.0317

Job Title cat, 35, A 16.7937 14.0781 2.7156 16.0784 16.1792 -0.1008 96.2887

City cat, 20, A 9.3992 9.118 0.2812 9.3211 9.35 -0.0289 89.7113

Job Title Relevance num, 7, A 0.4818 0.4967 -0.0148 0.4808 0.4808 0 100

Education num, 7, A 0.459 0.4246 0.0344 0.4589 0.4589 0 100

Last Modified num, 3, M 0.4969 0.4988 -0.0019 0.4922 0.4881 0.0041 -118.9678

Experience num, 4, M 0.5434 0.5143 0.0291 0.534 0.5271 0.0069 76.3071

Rank – 38.6497 40.4052 -1.7555 41.7055 42.1318 -0.4263 75.7162

(f) Balance Checking Statistics for CareerBuilder, Top 100

Table 5.8: Coarsened Exact Matching statistics for all three hiring websites on the top 100 candidates.

Note that Rank is not a feature in the matching procedure; I list it here to check the balance statistics.

The “Binning” column shows the type of each feature (categorical or numerical), how many bins

were used, and whether those bins where chosen Automatically by MatchIt or Manually by me.
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Variable Mean s.d (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Job Title Relevance 0.29 0.38

(2) Skills Relevance (1) 0.05 0.18 0.02

(3) Education level 0.47 0.35 0.11 0.04

(4) Job Popularity 0.04 0.19 0.33 0.00 -0.02

(5) Last Modified 0.50 0.29 0.10 -0.04 -0.03 0.05

(6) Experience 0.50 0.29 0.04 -0.02 0.00 -0.05 0.18

(7) Bio Relevance 0.13 0.27 0.09 0.40 0.07 0.02 0.02 0.01

(8) Information Relevance 0.35 0.38 0.11 0.08 0.08 0.00 0.05 0.07 0.11

(9) Skills Match 0.01 0.09 -0.01 0.44 -0.03 0.01 -0.01 -0.01 0.17 -0.01

(10) Information Match 0.02 0.15 0.04 0.17 -0.01 0.04 0.01 0.00 0.43 -0.01 0.42

(11) Bio Match 0.08 0.28 0.03 -0.01 -0.04 0.03 0.04 0.02 -0.03 0.45 0.05 0.06

(12) Prob. of Being Male 0.50 0.46 0.03 0.02 0.01 -0.01 0.01 0.03 0.04 0.01 0.01 0.01 -0.03

(a) Indeed

Variable Mean s.d (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Job Title Relevance 0.36 0.43

(2) Skills Relevance (1) 0.14 0.29 0.26

(3) Skills Relevance (2) 0.09 0.24 0.18 0.08

(4) Skills Relevance (3) 0.07 0.22 0.15 0.08 0.10

(5) Education level 0.59 0.24 0.05 0.09 0.08 0.08

(6) Job Popularity 0.12 0.30 0.38 0.13 0.06 0.05 -0.05

(7) Last Modified 0.51 0.29 0.02 0.00 0.00 0.00 0.01 0.02

(8) Experience 0.50 0.29 -0.09 0.00 0.00 -0.01 0.02 -0.07 0.05

(9) Relocate 0.64 0.48 0.00 -0.01 -0.01 -0.01 0.04 0.00 0.09 -0.07

(10) Skills Popularity (1) 0.31 0.38 0.22 0.58 0.02 0.02 0.03 0.15 0.00 0.00 -0.01

(11) Skills Popularity (2) 0.19 0.30 0.15 0.01 0.53 0.03 0.02 0.08 0.01 0.00 0.00 0.02

(12) Skills Popularity (3) 0.14 0.26 0.10 -0.01 0.03 0.50 0.01 0.06 0.00 -0.01 0.00 -0.02 0.02

(13) Prob. of Being Male 0.53 0.47 -0.04 -0.04 -0.01 -0.01 0.01 -0.03 -0.01 0.06 0.04 -0.06 -0.03 -0.02

(b) Monster

Variable Mean s.d (1) (2) (3) (4) (5)

(1) Job Title Relevance 0.39 0.43

(2) Education level 0.44 0.36 0.03

(3) Job Popularity 0.13 0.30 0.50 -0.02

(4) Last Modified 0.50 0.29 0.00 0.03 0.00

(5) Experience 0.52 0.28 -0.13 -0.01 -0.10 0.04

(6) Prob. of Being Male 0.49 0.46 -0.01 0.08 -0.04 0.00 0.04

(c) CareerBuilder

Table 5.9: Means, standard deviation, and correlations of the variables on Indeed, Monster, and

CareerBuilder. These results were computed using the Original candidates from my dataset.

100



CHAPTER 5. IMPACT OF GENDER ON HIRING SITES

5.3.3 Uncovering Hidden Features

Up to now, my analysis has focused on candidate features that are directly observable in

the search results. However, there is an element of each candidates’ profile that I cannot observe (on

Monster and CareerBuilder), but that may be taken into account by the ranking algorithm: resumes.

For example, Monster and CareerBuilder ask candidates to enter their education level into their

profile, and display this information in search results (e.g., high school diploma or Ph.D.), but actual

almae matres are likely stated in each candidate’s resume. The ranking algorithm could parse this

additional information from the PDF-format resume and use it when ranking candidates. Parsing

resumes makes sense from a website design standpoint, in that it allows the websites to collect

detailed information about candidates without having to ask them to enter it manually, which can be

tedious and time consuming.

To test if resume content influences ranking, I conducted controlled experiments using

resumes created and uploaded by me. I create two user accounts, A and B, in that temporal order,

with identical profile information and resumes. I then verify that the two accounts appear directly

adjacent in search results in the order B,A. Next, I delete the old resumes, upload two new resumes

(starting with A) that differ by exactly one feature, then query for my users again.6 In each treatment,

I assign A the “stronger” value for the feature, e.g., A attended an Ivy League school while B

attended community college. If user A appears before user B, it means the treatment variable in the

resumes has flipped the rank ordering, thus revealing that the algorithm takes that particular resume

feature into account. I repeat this process eight times on all three hiring websites, with the different

treatment features shown in Table 5.10.

Table 5.10 shows the results of my controlled experiments. Crucially, my gender treatment

did not influence the order of my users, which confirms that none of the hiring websites explicitly

rely on gender as a feature. In fact, of my eight treatments, I see that only three features were picked

out by the ranking algorithms: Monster’s algorithm ranks users by the strength of their alma mater

and whether they are currently employed, while CareerBuilder’s algorithm takes employment status

and frequency of job changes into account.

Discussion. While the use of these three features is not particularly surprising, this

6The time delay between uploading a resume and having it appear in search results can vary between 4–6 hours;

during this time I query periodically until my users appear. Thus, it is unlikely that my users receive many (if any) clicks

from recruiters before I measure their ranks. Minimizing clicks is important, because clicks may be a feature used to rank

candidates.
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Feature Description On Indeed On Monster On CareerBuilder

Gender Candidate A is male and candidate B is female No Effect No Effect No Effect

School ranking Candidate A lists Harvard and candidate B lists a less known university No Effect A.rank >B.rank No Effect

Employment Candidate A is currently employed while candidate B is not No Effect A.rank >B.rank A.rank >B.rank

Number of keywords Candidate A has more keywords matching the query than candidate B No Effect No Effect No Effect

Resume length Candidate A has a longer resume than candidate B No Effect No Effect No Effect

Job Churn Candidate A changes jobs less often than candidate B No Effect No Effect A.rank >B.rank

Contact information Candidate A has more detailed contact information than candidate B, e.g., social network accounts No Effect No Effect No Effect

Company name Candidate A is currently employed at Google and candidate B is in a made-up company No Effect No Effect No Effect

Table 5.10: Features tested in my controlled resume experiments. Cases where candidate A ranks

higher than B reveals that the given feature is taken into account by the ranking algorithm.

offers a possible explanation for why these ranking algorithms exhibit unfairness. Although I control

for all visible features in my matching and regression tests, I cannot control these unobserved features.

If these unobserved features are correlated with gender, then their influence will manifest in the

MLM in the coefficient of the gender feature.

It is plausible that these hidden features may correlate with gender. For example, a woman

returning to the workforce after a lapse in employment to raise children will be ranked lower by

Monster and CareerBuilder’s algorithms than an equivalently experienced, but currently employed,

man. In other words, structural inequalities that are related to gender can be exposed to the ranking

algorithms through candidates’ resumes.

Lastly, it is important to note that the treatments I examine in Table 5.10 may not be

comprehensive: I do not know what other hidden features the hiring websites extract from resumes. I

manually examined many real resumes from the hiring websites to inform the construction of my

tests, but I make no claim to have covered all potential features.

5.4 Alternative Ranking Approaches

In the previous section, I show that there are two pervasive issues with the search results

generated by Indeed, Monster, and CareerBuilder: the results exhibit ranking bias, and they are

unfair, with respect to gender. This raises critical questions: can these problems be remedied? If so,

are their tradeoffs when attempting to address bias or unfairness?

In this section, I propose two alternative ranking methods that each obey a different fairness

constraint: an unbiased ranker and a neutral ranker. I describe how I implement these rankers, and

then compare their output to the original search results produced by the hiring websites, as well as to

each other.
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5.4.1 Algorithms

I begin by introducing my two proposed ranking algorithms and the types of fairness that

they guarantee.

Unbiased Ranker. The goal of my unbiased ranker is to address the ranking bias that

I observe in my dataset. In other words, the unbiased ranker produces search results where the

statistical distributions of ranks for female and male candidates are identical. By construction, this

approach eliminates ranking bias, but it may not be fair, because it does not consider candidates’

features other than gender.

To implement an unbiased ranker, I split the candidates in the original search results into

female and male groups, while preserving the original order. Then the I interleave the two groups to

reconstruct a new, unbiased rank ordering of the candidates. For example, consider a list of search

results R from a hiring website

R = [(1,m), (2,m), (3,m), (4, f), (5,m), (6, f)],

where each tuple in the list is a candidate, and the format of each tuple is (rank, gender). I separate

the candidates into female and male lists

Rfemale = [(4, f), (6, f)]

Rmale = [(1,m), (2,m), (3,m), (5,m)].

Next, I interleave Rfemale and Rmale back into a single, unbiased list. For each candidate c
i

from

the smaller list Ri, I place them in the middle of k candidates [c
j1, cj2, . . . , c

jk

] from the larger list

Rj, where k = |Ri|/|Rj| and |Ri|  |Rj|. This produces clusters of k + 1 candidates of the form

[c
j1, cj2, . . . , c

j( k
2

), ci, cj( k
2

+1), . . . , cjk].
7 Returning to my example, the new unbiased search results

are

Rmerged = [(1,m), (4, f), (2,m), (3,m), (6, f), (5,m)].

The final step is to reassign the rank values to the candidates according to the new order

R̂u = [(1,m), (2, f), (3,m), (4,m), (5, f), (6,m)].

7Another possible approach to producing unbiased rankings would be selecting candidates in-order from Ri and Rj

based on weighted random sampling, with weights proportional to |Ri| and |Rj|. However this approach only produces

unbiased rankings in expectation, and may fail in practice if |Ri| ⌧ |Rj|. In contrast, my approach is deterministic, and

produces unbiased rankings by construction.
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Note that my unbiased ranker retains the original order of male and female candidates, respectively,

as they appeared in the original search results. Thus, within each gender group, candidates are

still ordered according to whatever features are used by a given resume search engine. All that the

unbiased ranker changes are the positions of female and male candidates relative to the other group.8

Neutral Ranker. The goal of my neutral ranker is to address the fairness issues that

I observe in my dataset. To achieve gender-agnostic search results, the neutral ranker removes the

gender effect from search results that is captured by the Probability of Being Male coefficient in

my MLMs. Specifically, I can calculate an adjusted rank for each candidate R̂n (corresponding the

adjusted log rank ŷn) by subtracting the gender effect from the dependent variable y:

ŷn = y �Xgender�gender,

where Xgender is the column corresponding to gender in X, and �gender is the gender effect. By

re-ranking the candidates according to ŷn, I am able to produce a gender-agnostic rank for candidates.

In essence, my neutral ranker simply adjusts the original rank of each candidate by

removing the “bonus” for being male that I observe in Table 5.5. Thus, the results are fair by

construction. Since I only manipulate �gender, the relative ordering of candidates with respect to

other features (e.g., experience and education) will not substantially change.

5.4.2 Evaluation

In this section, I evaluate my ranking algorithms. I consider their impact on the rank of

female and male candidates, as well as whether their outputs are unbiased and fair.

Ranking Similarity. I begin by evaluating how close the rankings produced by my

algorithms are to the original rankings produced by the hiring websites. Figure 5.6 shows the nDCG

distributions across job titles and cities for my unbiased and neutral rankers. I plot separate lines for

each hiring website, and separate the figures for the top 1000 and top 100 candidates (since the these

candidates are, arguably, most important to recruiters).

There are three takeaways from Figure 5.6. First, I see that the unbiased ranker causes

more changes to the search results than the neutral ranker, relative to the original search results.

However, second, in absolute terms, both algorithms produce results that are similar to the original

data: 84-93% of the nDCG scores for the unbiased ranker are � 0.9 across all three websites, while

8For simplicity, I do not show candidates with ambiguous gender in this example. In my implementation, I put

ambiguous candidates in a separate list R
ambiguous

, and merge it with R
female

and R
male

during the final steps.
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(b) Top 1000, neutral ranker
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(d) Top 100, neutral ranker

Figure 5.6: nDCG comparison of the unbiased and neutral rankers when compared to the original

search results. Figures 5.6a and 5.6b focus on the top 1000 candidates, while Figures 5.6c and 5.6d

focus on the top 100.

all of the nDCG scores for the neutral ranker are close to 1. The nDCG scores produced by the

neutral ranker make intuitive sense, given that the Probability of Being Male feature has a relatively

small coefficient on all the hiring sites (see Table 5.5) Finally, the nDCG lines have similar trends

when comparing the top 1000 to the top 100 candidates. This shows that my algorithms are robust

even when subsampling the original data.

Impact on Ranking Bias. Next, I evaluate the impact of my algorithms on ranking bias,

i.e., do they eliminate it? To answer this question, I use the M-W U test to examine the distributions

of male and female candidates in the search results produced by the unbiased and neutral rankers.

I apply the same rules as when I evaluated the original search results, i.e., I only examine samples

with � 20 male and female candidates.
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Figure 5.7: Change in the median rank of female candidates after applying my unbiased and neutral

rankers. Positive values correspond to increases in the median rank for female candidates after

re-ranking. Figures 5.7a and 5.7b focus on the top 1000 candidates, while Figures 5.7c and 5.7d

focus on the top 100.

Table 5.4 shows the results of the M-W U tests on search results produced by my unbiased

and neutral algorithms. As expected, my unbiased ranker completely removes the ranking bias,

because I reorder the female and male candidates evenly. However, for the neutral ranker, ranking

bias remains as prevalent as in the original data. This is because the neutral ranker is designed to

remove the gender unfairness, and the gender coefficient is small in my regression models.

The results in Table 5.4 reveal the first tradeoff between my two ranking algorithms:

guaranteeing fair search results does necessarily guarantee unbiased search results.

Impact on Female Candidates and the Gender Gap. The nDCG and M-W U tests

show the impact of reordering candidates at the level of whole lists of search results. However, these
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Figure 5.8: Change in the gender gap after applying my unbiased and neutral rankers. Positive values

correspond to shrinking gender gaps, i.e., the median rank between male and female candidates

is getting smaller after re-ranking. Figures 5.8a and 5.8b focus on the top 1000 candidates, while

Figures 5.8c and 5.8d focus on the top 100.

metrics do not tell me about the actual rank changes experienced by candidates, i.e., are female

candidates moving up or down, and are they getting closer or farther from male candidates? To

answer these questions, I evaluate the following two metrics for each re-ranked list of search results.

First, I examine the change in median rank for female candidates due to my ranking

algorithms. I calculate

d
f

(R, R̂) = m̃
f

(R)� m̃
f

(R̂)

where m̃
f

(R) is the median rank of female candidates in the original search results R, and R̂ are

the search results after applying one of my ranking algorithms. Intuitively, if d
f

(R, R̂) is positive,
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female candidates are moving up in the ranking after applying my ranking algorithm.

Figure 5.7 shows d
f

() for each search result sample in my dataset. As before, I have

separate lines for each hiring website, and separate plots for the unbiased and neutral rankers, broken

down over the top 1000 and top 100 candidates.

There are three takeaways from Figure 5.7. First, the unbiased ranker can cause the median

rank of female candidates to increase or decrease. This makes sense because there are some job titles

(e.g., Registered Nurse) were female candidates have stronger attributes than male candidates, so

redistributing the candidates actually lowers the median rank of females in these cases. However,

84%, 70%, and 57% of the top 1000 search result samples experience a positive d
f

() on Indeed,

Monster, and CareerBuilder, respectively, after applying the unbiased ranker. This shows once again

that the majority of search results in my dataset contain ranking bias against female candidates.

Second, the neutral ranker always increases the median rank of female candidates. This is expected

since the neutral ranker removes the negative impact of the Probability of Being Male feature, i.e., it

lowers the rank of male candidates, effectively pushing up the rank of female candidates. However,

the absolute amount of rank improvement for female candidates is marginal due to the small value of

the Probability of Being Male coefficient. Finally, I observe similar trends for the top 1000 and top

100 candidates on all three sites.

Next, I examine the “gap” between male and female candidates in the search results,

expressed as the difference in their medians before and after re-ranking the search results using my

algorithms. I calculate

dgap(R, R̂) =|m̃
m

(R)� m̃
f

(R)|

� |m̃
m

(R̂)� m̃
f

(R̂)|,

where m̃
m

(R) and m̃
f

(R) are the median ranks of male and female candidates, respectively, in the

original search results R. If dgap(R, R̂) > 0, then my ranking algorithm is shrinking the rank gap

between female and male candidates when comparing the original search results R to the re-ranked

results R̂. Alternatively, if dgap(R, R̂) = 0 then the gap is unchanged, and if dgap(R, R̂) < 0 then

the gap is widening.

Figure 5.8 shows d
gap

() for each search result sample in my dataset. Comparing Figures 5.7

and 5.8, I see that the impact of my two ranking algorithms has essentially flipped. The unbiased

ranker closes the rank gap in almost all cases on the three platforms (recall that positive values

indicate that the gender gap is shrinking). In 84%, 50%, and 26% of search results the gender gap

shrinks more than 10 on Indeed, Monster, and CareerBuilder. In contrast, the neutral ranker produces
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Figure 5.9: Change in the value of the Experience and Education feature after applying my unbiased

and neutral rankers on the top 100 Software Engineer candidates in New York City. Red dots are for

the unbiased ranker, while blue dots are for the neutral ranker, as shown in Figure 5.9b.

roughly equal cases of increasing and decreasing gender gaps. I observe similar trends for both the

top 1000 and top 100 candidates across the three hiring websites.

Once again, I find that there are tradeoffs when using my ranking algorithms. The unbiased

ranker decreases the median rank of female candidates in some job titles and cities, which seems

like an undesirable outcome in a society where women are known to face structural barriers and

discrimination in employment. However, the unbiased ranker also reduces the gap between the

ranks of male and female candidates, which sounds like a desirable outcome from the perspective of

promoting gender equality. Conversely, the neutral ranker exhibits the exact opposite properties: it

uniformly increases the ranks of female candidates (as it is designed to), but this has the side-effect

of sometimes increasing the gender gap in professions where women are historically strong (e.g.,

Registered Nurses and Cashiers).

Impact on Feature Values. Finally, I examine the impact of my unbiased and neutral

rankers on the value of candidate features. The question is: do the candidates at a given rank i have

similar features before and after re-ranking the search results using my algorithms? Ideally, I would

like the change in value of candidate features before and after re-ranking to be small, since I would
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like to preserve the ordering function used by the hiring website’s original ranking function. For

example, Monster primarily ranks candidates by the relevancy of their job title and their experience

(See Table 5.5); this creates reasonably well-organized search results, where candidates with similar

features appear close together. However, it might confuse a recruiter and degrade the usability of the

search results if candidates with very different features were mixed together, even if this was done in

the interest of removing bias or increasing fairness.

To examine the change in feature values, I calculate the difference in value of a given

feature x for the candidate at each rank i in search results R and R̂ (i.e., before and after re-ranking

using one of my algorithms). For example, if the candidate at rank 1 originally had 10 years of

experience, and the new candidate at rank 1 after re-ranking has 5 years of experience, I would

calculate a change of 5 for rank 1.

As a representative example, Figure 5.9 shows the changes in feature values for Experience

and Education of top 100 Software Engineer candidates in New York City on the three hiring websites.

Note that I normalize all features in my dataset to be in the range [0, 1], so all differences will be in

the range [�1, 1]. The red dots correspond to the changes induced by the unbiased ranker, while blue

dots are the neutral ranker. I see that the unbiased ranker introduces many changes in the feature

values. This is due to the goal of the unbiased ranker, i.e., fixing ranking bias, without controlling for

user features other than gender. On the other hand, the neutral ranker does not change the feature

values of candidates most of the time, because 1) it makes fewer changes to the ranking overall

(compared to the unbiased ranker), and 2) when it does make changes, it tends to move candidates

relatively short distances (see Figure 5.7).

The takeaway from Figure 5.9 is that the pattern of tradeoffs between my ranking algorithms

continues. If the designer of a resume search engine desires to create search results that follow some

relatively deterministic ordering (e.g., by experience or resume update time), the neutral ranker is

superior: it ensures gender fairness, but also allows the hiring website to control for other candidate

features. This may be a desirable property from a usability perspective. Conversely, to remove

ranking bias, the unbiased ranker needs the flexibility to dramatically reorder candidates, which

makes it difficult to create search results that are organized around a logical ordering.

5.5 Summary

In this study, I examine gender inequality on the resume search engines provided by Indeed,

Monster, and CareerBuilder. I crawled search results for 35 job titles across 20 U. S. cities; these
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contain data on 855K candidates. Using statistical tests, I find two significant issues with the search

results produced by these search engines:

• Ranking Bias: 18.2%, 13.5%, and 18.2% of job title/city pairs on Indeed, Monster, and

CareerBuilder (respectively) show statistically significant ranking bias. This corresponds to

between 6 and 16 distinct job titles (depending on the hiring website) where male candidates

appear at systematically higher ranks in search results than female candidates.

• Unfairness: I find statistically significant, negative correlations between rank and gender in

my dataset. This means that even when controlling for all other visible candidate features,

there is a slight penalty against female candidates.

My two metrics for measuring gender inequality (ranking bias and fairness) are comple-

mentary. Search results that exhibit ranking bias are not necessarily unfair, since the former metric

does not control for candidate features other than gender. Only by examining both metrics can I

obtain a thorough understanding of gender inequality in search results.

Using controlled experiments, I probe the hidden features that influence candidate rank

on these resume search engines. Importantly, I find that none of the three websites directly use
gender as a feature, i.e., their algorithms are not explicitly discriminatory. This concurs with the

design of the hiring websites, which do not ask for candidates to input their gender. However, I do

see that other hidden features (unemployment and alma mater) are taken into account. I hypothesize

that these hidden features may be the underlying cause of the unfairness I observe in search results,

since one or more of these features may correlate with candidate’s gender.

Finally, analysis of my proposed ranking algorithms highlights the tradeoffs that are

inherent when enforcing different definitions of fairness. My unbiased algorithm is effective at

reducing the gap between the median rank of male and female candidates, which can be viewed as

a positive step towards gender equality. On the other hand, it reduces the median rank of female

candidates in some job titles (e.g., Registered Nurse); it also produces search results that intermingle

candidates with very different qualifications at similar ranks, which may confuse recruiters and

impede usability. My neutral ranker offers the exact opposite outcomes: it uniformly improves the

rank of female candidates, and produces nicely sorted search results, but it can increase the gender

gap in certain circumstances.
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Conclusion

In §3, §4, and §5 I described my previous work in detail. In this section, I summarize the

key findings and impact of my work. I also discuss my procedure for conducting ethical algorithmic

auditing studies. Finally, I provide general guidelines to future studies focusing on algorithm audits.

6.1 Summary and Impact

My thesis examined three opaque systems: the ride-sharing system Uber, the e-commerce

marketplace Amazon, and the online hiring websites Indeed, Monster, and CareerBuilder. The

findings of my work reveal fairness and effectiveness issues on these systems.

Uber Study. In the Uber study, I present the first in-depth analysis of Uber. I leverage

four weeks of data collected from Uber’s smartphone app and official API that covers midtown Man-

hattan and downtown San Francisco. Using the measured data on supply, demand, surge multipliers,

etc., I am able to uncover some implementation details of Uber’s dynamic pricing algorithm. In

particular, Uber divides cities into separate surge regions, where each region independently updates

its surge multiplier on a 5-minute clock, based on the supply and demand in the immediately previous

5-minute window. Leveraging the surge regions, I propose a method to potentially reduce the price for

Uber riders: walk to a neighboring surge region to receive a lower surge multiplier. My experiment

shows that this method can save customers 50% on fares 20% of time when the rider is around Times

Square.

In addition, my findings reveal that the surge pricing mechanism may not be as effective as

Uber claims. Uber has stated that the goals of surge pricing are to increase supply and intentionally

reduce demand, and they claim that the system increased the number of drivers by 70-80% after
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it was introduced [84]. However, as I show in §3, while surges do seem to have a small effect on

attracting new cars, it also causes drivers to either become idle or even drive away from the surge

area. This demonstrates that the surge mechanism may not be as effective at attracting driver supply

as it is at depressing passenger demand.

More importantly, my investigation discovered a consistency bug that was serving random

surge multipliers to customers. I notified Uber of this bug and they fixed it. However, the bug had

existed for 6 months without being noticed by Uber, causing potential harm to customers.

Amazon Study. In this study, I took the first steps towards detecting and quantifying

sellers using algorithmic pricing on Amazon Marketplace. I collected four months of data on over

1600 products and 22000 sellers on Amazon marketplace, and detected over 500 algorithmic sellers

using my detection methodology.

My findings uncover the power of algorithmic sellers in Amazon marketplace. Sellers I

identified as using algorithmic pricing receive more feedback and win the Buy Box more frequently.

My data-driven simulations suggest that algorithmic sellers have higher sales volumes and thus

more revenue than non-algorithmic sellers, under a variety of different customer purchasing models.

Receiving more feedback may create a feedback loop for algorithmic sellers to generate higher sales

volumes, since feedback is a key feature used by the Buy Box algorithm. This makes it difficult for

non-algorithmic sellers to compete in the market.

Hiring Study. In this study, I examine gender inequality on the resume search engines

provided by Indeed, Monster, and CareerBuilder. I crawled search results for 35 job titles across 20

U.S. cities; these contain data on 855K candidates. Using statistical tests, I find two significant issues

with the search results produced by these search engines: female candidates are unfairly ranked lower

in general according to my two equality definitions, Ranking Bias and Unfairness, as described in §5.

To combat the inequality, I propose two alternative ranking methods that separately address

these two scenarios. The evaluation of the two new rankers highlights the tradeoffs that are inherent

in operationalizing different definitions of fairness: 1) guaranteeing fair search results does not

necessarily guarantee unbiased search results; 2) my unbiased ranker reduces the gender gap but

may lower female rank in some cases, whereas my neutral ranker always increases female rank but

may enlarge the gender gap; 3) my unbiased ranker reorders the candidates dramatically, which may

produce search results that are not intuitively ordered for recruiters.

Impact of my Work. My work has practical ramifications for consumers, and

consequently it has received significant media attention in venues such as NBC News, ABC
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News, the Boston Globe, NPR, USA Today, Fortune, Money, Consumer Affairs, and Mother-

board [40, 66, 87, 99, 108, 115, 117, 125, 143, 146, 165, 185]. This has helped raise awareness of

algorithmic issues with the public, and pressure companies to become more transparent. For example,

Uber started a new transparency blog in response to my Uber study [127].

I am one of the few scholars that has empirically studied platform marketplaces using an

observational approach. This has attracted the attention of scholars from many research disciplines,

including: economics, statistics, civil engineering, and computer science. By sharing my method-

ology, code, and data with these research groups, we are working together toward building more

transparent, efficient, and fair marketplaces for people. I am honored that I was invited to publish a

letter in ACM SIGEcom Exchanges highlighting my work on Uber and Amazon [53]. My empirical

work is also heavily cited in ongoing litigation against Uber [1].

I also collaborate with governmental regulators such as the European Commission and

a transportation commission in a major U.S. city. By adopting my measurement methodology,

the European Commission was able to identify and formally challenge price discrimination by the

Disneyland theme park in Europe. This led to Disneyland changing its business practices.

Finally, as my contribution to researchers who will be working on these topics in the future,

I share my code and data at

http://personalization.ccs.neu.edu

6.2 Ethics for Algorithm Audits

Conducting an ethical algorithmic audit of an opaque system requires extra care to minimize

the impact and harm on all involved parties: the users of that system, and the company that runs

the system. In this section, I describe my procedure for conducting ethical algorithmic audits that I

follow in my studies, which I hope will serve as a reference for future investigators.

1. To initiate an algorithmic auditing study on a service, the first step is to read the service’s Terms

of Service (ToS), and carefully weigh the risks of gathering data from the service. Consider

that gathering data may require crawling, creating fake accounts, or borrowing the accounts

of real users (e.g., through an in-person lab experiment, or via crowdsourcing). All of these

methods may violate the company’s ToS, which some courts have construed as violations of the

Computer Fraud and Abuse Act (CFAA). If the legal risks from potentially breaking the CFAA

are beyond what the investigator can comfortably manage, the study has to be abandoned, or
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alternative strategies for data collection must be devised. Fortunately, researchers are fighting

to update this outdated and vague law [16], and their effort has already shown some positive

changes [119].

2. Next, the investigator needs to consult an Institutional Review Board (IRB) to get an approval

or a waiver to start the study, especially when the service under investigation involves human

users. Audits are a form of deception study, where the company or service is the subject,

and they are unaware that an experiment is being conducted. As with any deception study,

the investigator should make plans to debrief the subject at the conclusion of the experiment.

Furthermore, the investigator should minimize their impact on human users of the target

service; ideally, the experimental methodology should not directly interact with users in any

way (i.e., during data collection). Finally, the investigator should carefully consider what data

is necessary for their analysis, and minimize collection of personal information, or obfuscate

this data after collection.

3. Once the study is approved by the IRB, the investigator needs to decide the rate and scale of

the data crawler. The investigate should minimize the impact of the crawler on the service: set

the crawling rate just enough to get sufficient data for the study. When the service requires

creating accounts to scale the data collection, the investigator should create a minimal amount

of fake accounts to conduct the study, and (if possible) delete them after collection is complete.

4. Before the research work is publicly released (e.g., when it gets accepted to an academic

venue), the investigator should contact the audited companies to responsibly disclose the

findings. This gives the company an opportunity to correct any factual errors in the study, and

it is appropriate to allow the company to add a statement to the publication if they so desire.

5. Finally, the investigator may share the data with other research groups, subject to IRB restric-

tions and privacy norms. Researchers should take care to ensure that users’ contextual privacy

is preserved when deciding whether to release data [140]. The release of data represents a

fundamental tradeoff between facilitating reproducibility, versus protecting user’s privacy,

and the researcher should carefully consider how to manage this issue. Nonetheless, the

investigator can always share their code and methodologies to peers to help reproduce the

work and facilitate future studies.
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6.3 A Guide for Future Audits

In this section, I share the lessons I learned about how to choose systems to audit. Although

there are an increasing number of deployed systems that utilize opaque algorithms, not all of them

are equally interesting and worthy of researchers time. In particular, I discuss two issues that may

make a system biased and harmful to users, and thus worth investigating using an algorithm audit:

Incentive Misalignment and Biases in Human Data.

6.3.1 Incentive Misalignment

Misaligned incentives occur when the participants on a platform have different and con-

flicting goals [36,138]. For example, in a marketplace, sellers are incentivized to increase the product

price for more profit, but buyers want to decrease the price for more savings. This is not problematic

for open marketplaces as they tend to reach equilibrium naturally. However, for marketplaces that

use opaque algorithm to control the price, the misaligned incentives may result in unfairness and

manipulation. In general, any system that has the potential for misaligned incentives is a potential

target for an audit.

Unfairness. The incentive for almost all businesses is to profit. However, sometimes

the methods used to obtain profit may introduce unfairness to users. This is particularly problematic

in opaque systems, such as Uber and Amazon, where there is information asymmetry (i.e., the

platform provider has information that is unavailable to customers and sellers) or structural barriers

(i.e., the platform provider has control over how information is presented to users).

On Uber, information about the supply of vehicles and demand for rides are not available

to customers, and only indirectly available to drivers (presented as a heatmap of surges throughout

an area). Uber has been accused of using multiple “tricks” to increase profits that rely on this

information asymmetry. These instances include: upfront pricing showing different routes and fares

for drivers and riders [183]; a price fixing scheme is currently being litgated [43]; and possible

exploitation of Uber users being more likely to pay surge prices when their phone battery is low [56].

Although the pricing bug I discovered in §3 is not discriminatory pricing, it easily could have been,

and nobody would have known if I had not audited Uber’s systems.

Amazon has enormous power to steer the buying habits of its customers by controlling the

order of products in search results, as well as choosing which seller occupies the Buy Box. As I show

in §4, the “is Amazon?” feature has some weight in deciding the winner of the Buy Box, which may
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indicate that Amazon favors themselves to win the Buy Box (thus increasing their own profit at the

expense of third-party sellers). I also show that the Buy Box tends to highlight sellers that do not

offer the lowest prices on goods; although customers can still access the lowest priced offers, this

requires additional clicks and searching, which creates a powerful disincentive against this behavior.

Manipulation. Opaque systems are vulnerable to manipulation: once the participants

learn the systems, they may be able to “game” it. For example, drivers on Uber exploited the surge

pricing algorithm by intentionally colluding to reduce supply and this induce surge pricing [19].

Similarly, sellers on e-commerce marketplaces can exploit the feedback feature to boost their

reputation among competitors [190].

Manipulation is also possible on the customer side. As I present in §3, Uber riders are

able to avoid surge pricing by walking to a neighboring surge region. This benefits savvy riders,

but reduces profits for Uber and drivers. In another infamous example, customers where able to

exploit Walmart’s automatic price matching system by listing Playstation 4 consoles on Amazon for

below-market prices, then purchasing the consoles from Walmart after they dropped their price [79].

In both of these cases, knowledge of the system’s mechanisms allows people to manipulate them in

ways the designers had not considered or accounted for.

6.3.2 Biases in Human Data

Human beings have cognitive biases that influence the data they create. In essence, human

biases become embedded in data, making it non-neutral with respect to sensitive issues like gender,

race, etc. These biases make it challenging for system designers to leverage data collected from

human beings: unless the algorithms are very carefully designed, the biases in the data may train

the algorithms to exhibit unfairness. Any system that relies on data from human beings to power a

sensitive procedure is a valid potential target for an algorithm audit.

For example, on online hiring websites, if the click-through rate is used as a feature

for ranking candidates, and the recruiters exhibit (unconscious) bias towards people with certain

demographic traits (e.g., women and/or minorities), then the impacted sub-populations will be

unfairly ranked lower, harming their opportunities for being seen, interviewed, and hired. Similarly,

prior work has shown that in online gig-economy markets, customers leave biased feedback and

reviews for workers, which then led to search results that were also biased against these marginalized

workers [90]. Finally, researchers have shown that racial discrimination exists in other marketplaces

such as eBay [20] and AirBnb [69].
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Even worse, algorithms that are biased by human data may create feedback loops that con-

tinuously harm the marginalized sub-population. For example, on the hiring websites, if candidates

with certain demographic traits are less likely to be hired, they will have less working experience than

other competing peers. As I show in §5, experience is a significant feature affecting the candidate’s

ranking, so less experience translates to lower rank, making the candidate even less likely to be

hired in the future. Likewise, in the online gig-economy, biased feedback from customers may hurt

workers’ ratings, making the workers less likely to get hired again in the future. This pernicious

cycle can be thought of as a new form of algorithmically-driven structural bias.

To address these issues, one option is to develop fair Machine Learning algorithms that

control for human bias within datasets [76, 85, 92]. This method is similar to my Neutral Ranker in

§5. However, as I showed, this method creates tradeoffs that may not satisfy all notions of fairness.

Further, if some highly predictive feature is not adopted due to potential biases against certain

demographics, the predictive power of the algorithms will be weakened. This raises fundamental

questions about the applicability of predictive algorithms, i.e., there may be scenarios where accurate

prediction is entirely reliant on stereotypes and structural biases that exist in reality, but are undesirable

from a social perspective. Finally, although new tools or techniques may address bias issues in

algorithms, we must still rely on algorithmic auditing to verify that deployed systems are using

these new tools and obeying best practices. Meanwhile, system designers need to be vigilant about

how their platforms, content, and the behavior of users change over time, as people are inherently

unpredicatable, and bias can re-emerge in unexpected ways.
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