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Abstract of the Dissertation

Algorithmic Fairness in the Real World: Challenges and Considerations

by
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Dr. Christo Wilson, Advisor

The existence of social bias in Machine Learning (ML) algorithms is a pervasive, well-

known problem. Strides have been made in identifying, intervening in, and regulating

algorithms like facial recognition and sensitive classification problems like credit lending

and recidivism prediction in criminal justice. In the light of such discoveries, the research

community has shown significant theoretical progress in proposing different metrics to measure

bias, and a suite of different algorithmic interventions to mitigate such biases. However,

there are under-explored challenges in translating such theoretical fairness work into real

world, practical ML systems. Noisy demographic information, adversarial vulnerabilities,

policy restrictions, and the complex interplay of human decision makers with fair algorithmic

interventions all play a significant role in the real world outcomes of these systems. In my

thesis, I attempt to outline these problems in fair ML systems, with the aim to gain a more

complete understanding of the challenges involved and to be able to provide technical and

policy recommendations to overcome their real world implementation challenges.
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Chapter 1

Introduction

1.1 Background

Algorithmic decision making has permeated every aspect of modern life, including high-

stakes decisions like credit lending, bail granting, hiring, etc. While these ML models are great

at scaling up processes with human bottlenecks, they also have the unintended consequences

of picking up historical social biases like racism, sexism, homophobia, ableism, ageism, or

religious intolerance [15].

In response to this, there is a growing body of academic work on ways to detect algorithmic

bias. Journalists and academics have conducted audit studies of existing systems like

Propublica’s audit of the COMPAS software [11], studies about biases in Google’s and

Facebook’s recommendation algorithms cite? – Christo, and several studies of biases in

two-sided marketplace systems (Amazon, Uber, Lyft, etc.) [53, 102]. Acknowledging the

growing criticism of the adverse social impacts of opaque systems, companies are starting

to agree to independent cooperative third party audits, notable instances of which include

audits of hiring software like pymetrics [211] and HireVue1. Different frameworks have been

suggested for the best ways to conduct such audits [165].

On the other side of the spectrum, there exist various mitigation measures for biases

introduced by algorithms [140]. There is now extensive literature documenting techniques

for training fair classification [83,98,107,143] and ranking [44,190,216] models. Companies

are adopting and deploying fair ML systems in many real-world contexts [6, 16,211].

1https://www.hirevue.com/press-release/independent-audit-affirms-the-scientific-foundati
on-of-hirevue-assessments
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CHAPTER 1. INTRODUCTION

As with most burgeoning disciplines, however, “fair ML” research has the problem of having

a number of theories and tools that work in situ [14], but may fail during implementations

in vivo. To name just a few: notions of fairness in the research community are western-

centric [175], intersectionality is only beginning to be implemented in fairness metrics [79],

practitioners may do the bare minimum necessary to avoid legal liability while not significantly

mitigating issues of bias [177], and the complex interplay between biased human decision

makers and machine learning models [197]. Addressing these challenges requires a concerted

effort from researchers, practitioners, and policymakers, and more importantly, moving away

from benchmark based theoretical fairness studies to real-world harm measurement and

mitigation.

In my work, I focus on implementation time problems with fair ML—their behavior in

the presence of none or partial sensitive attributes, fairness in the presence of adversarial

actors, and model bias over time. My goal is to demonstrate the severity of these issues in

practice, to heighten awareness among researchers and practitioners, and to present solutions

to these real world implementation challenges.

1.2 Research Questions

While a lot of progress has been made in the fields of fairness, accountability, transparency,

and ethics of ML algorithms, there is still a considerable amount of practical challenges

involved before this work can translate into real world social improvements for historically

underrepresented minorities. My thesis aims to identify and tackle some these challenges.

These are the specific research questions I aim to answer:

• RQ1: Does noise in demographic information as an input to a fair ML algorithm

impact the intended fairness of the outcomes for different subgroups? If so, what groups

are impacted and how?

• RQ2: Can fair ML models be attacked by adversarial actors to create even more

unfairness? If so, what groups are impacted and how?

• RQ3: In fair ML techniques that deliberately do not use protected attributes, how do

their theoretical guarantees hold up in real life when compared against actual ground

truth?

2



CHAPTER 1. INTRODUCTION

• RQ4: Do fair ML models, once deployed in a production system, continue to remain

fair in the face of changing data and feature-output relationships? If so, can such

unfairness be measured and mitigated?

I discuss more details about my RQs in 1.3, 1.4, 1.5, and 1.6, respectively.

1.3 When Fair Ranking Meets Uncertain Inference

In cases where people are the data subjects being input to classification or ranking

algorithms, the vast majority of existing work assumes that ground-truth demographic

information will be available to mitigate sexism, racism, ageism, and other social biases [60].

This demographic data is crucial as it is used to measure and control for unfair biases, thus

enabling fair outcomes.

Unfortunately, this assumption about the availability of ground-truth demographic data

is often violated in practice. For example, in real-world contexts like assessing job applicants

or credit seekers, social and legal barriers may prevent algorithm operators from collecting

peoples’ demographic information [8, 31].

The unavailability of ground-truth demographic data has led some system developers

to adopt an alternative approach: infer protected class information from data and then

supply it to the fair algorithm as input. One example of this is the Bayesian Improved

Surname Geocoding (BISG) inference algorithm that is used by lenders and health insurers

in the U.S. to infer people’s race and ethnicity [3, 37]. This demographic data is used to

ensure that lenders are making race-neutral lending decisions and that health insurers are

not discriminating based on race. Given the high-stakes of these use cases, it is clear that

accurate demographic information is critical, lest unchecked discrimination lead to serious

harms.

The use of inferred data raises the issue that errors in inference may subvert the fairness

objectives that a fair algorithm is attempting to optimize for. Intuitively, a fair algorithm

cannot be expected to control for social biases if those biases are not represented in data due

to errors. To the best of my knowledge, this problem has not been explored systematically in

the literature, despite the fact that consequential real-world systems like BISG have adopted

the practice.

3



CHAPTER 1. INTRODUCTION

In Chapter 3, I investigate how uncertainty in demographic inference impact fairness

guarantees in the context of ranking algorithms. I approach this question using two comple-

mentary techniques. First, I use simulations to explore the relationship between population

demographics, fairness metrics, and inference errors under controlled conditions. Second,

to address the issue of ecological validity, I examine three case studies based on real-world

datasets. Each of these datasets includes ground-truth demographic data, which enables

us to generate a baseline unfair ranking and an “optimal” fair ranking. I compare these

lower and upper bounds against rankings generated by a fair ranking algorithm when using

erroneous demographic inferences as input. I present results using demographic inference

error rates drawn from different real-world algorithms.

These were my main findings:

• In the simulation study, the fairness metrics (both representation-based and exposure-

based) of the final ranked list increased monotonically with the increase in the accuracy

of the prediction of the protected attributes. This is not a surprising result—as noise

in the protected demographic attributes increases, the effectiveness of the fairness

intervention reduces. I also observed that despite the fairness metrics varying widely

based on the accuracy of demographic label prediction, the relevance of the ranked

list, as measured by NDCG, barely changed, signifying that it is possible to perform

noticeable fairness interventions without noticeably affecting the quality of rankings.

• In the case studies, I observed that the different rate of mispredictions for different

demographic groups led to not only less fair rankings than if there were no noisy labels,

but for certain demographic subgroups, the “fair” rankings were actually even more

unfair than if no fairness intervention was performed. This is an alarming finding,

showing that if not operationalized correctly, a fair algorithm can selectively perpetuate

unfairness.

The results suggest that developers should not use inferred demographic data as input to

fair ranking algorithms, unless the inferences are extremely accurate.

4



CHAPTER 1. INTRODUCTION

1.4 Subverting Fair Image Search with Generative Adversarial

Perturbations

In the previous chapter, I demonstrate how unintentional errors in demographic data

can dramatically undermine the objectives of fair ranking algorithms [77].

Another serious concern in the ML community is model robustness, especially in the

face of clever and dedicated adversaries. The field of adversarial ML has demonstrated that

seemingly accurate models display surprising brittleness when presented with maliciously

crafted inputs [40, 200], and that these attacks impact models across a wide-variety of

contexts [17, 51, 92, 200]. The existence of adversarial ML challenges the use of models in

real-world deployments, particularly deep learning models.

In Chapter 4, I explore the intersection of these two concerns—fairness and robustness—in

the context of ranking: when a ranking model has been carefully calibrated to achieve some

definition of fairness, is it possible for an external adversary to make the ranking model behave

unfairly without having access to the model or training data? In other words, can attackers

intentionally weaponize demographic markers in data to subvert fairness guarantees?

To investigate this question, I present a case study in which I develop and then attack a

fairness-aware image search engine using images that have been maliciously modified with

adversarial perturbations. I chose this case study because image retrieval based on text

queries is a popular, real-world use case for neural models (e.g., Google Image Search, iStock,

Getty Images, etc.), and because prior work has shown that these models can potentially

be fooled using adversarial perturbations [221] (although not in the context of fairness). To

strengthen my case study, I adopt a strict threat model under which the adversary cannot

poison training data [99] for the ranking model, and has no knowledge of the ranking model

or fairness algorithm used by the victim search engine. Instead, the adversary can only add

images into the query database, after the image retrieval model is trained.

For my experiments, I develop an image search engine that uses a state-of-the-art Multi-

Modal Transformer (MMT) [73] retrieval model and a fair re-ranking algorithm (FMMR [108])

that aims to achieve demographic group fairness on the ranked list of image query results

without ever explicitly using demographic labels. Under normal circumstances, where the

images are unperturbed, my search engine returns demographically balanced sets of images

in response to free text queries. I then train a generative adversarial perturbation (GAP)

model [163] that learns from pretrained demographic classifiers to strategically insert human-

5



CHAPTER 1. INTRODUCTION

imperceptible perturbations into images. These perturbations attempt to cause FMMR to

unfairly boost the rank of images containing people from an adversary-selected subpopulation

(e.g., light-skinned men).

I observe the following findings from extensive experiments:

• My attacks can successfully confer significant unfair advantage to people from the

majority class (light-skinned men, in my case study)—in terms of their overall rep-

resentation and position in search results—relative to fairly-ranked baseline search

results.

• My attack is robust across a number of variables, including the length of search result

lists, the fraction of images that the adversary is able to perturb, the fairness algorithm

used by the search engine, the image embedding algorithm used by the search engine,

the demographic inference algorithm used to train the GAP models, and the training

objective of the GAP models.

• My attacks are stealthy, i.e., they have close to zero impact on the relevance of search

results.

In summary, I show that GAPs can be used to subvert fairness guarantees in the context

of fair image retrieval. Further, I demonstrate that my attack is successful under a highly

restricted threat model, which suggests that more powerful adversaries will also be able to

implement successful attacks. I hypothesize that similar attacks may be possible against

other classes of ML-based systems that (1) rely on highly parameterized models and (2)

make fairness decisions for inputs that are based on data controlled by adversaries.

1.5 When Fair Classification Meets Noisy Protected Attributes

Similar to challenges in implementing fair ranking and search as I discuss in the previous

chapters, hurdles also remain to the adoption of fair classifiers in real world scenarios—chief

among them being questions about demographic data itself. Many classical fair classifiers

assume that protected attributes are available at training time and/or testing time [60] and

that this data is accurate. But as I already discuss in the previous two chapters, demographic

data may be noisy, for reasons such as reliance on imperfect demographic-inference algorithms

to generate protected attributes (1.3), imprecision in human-generated labels [55], or the

6



CHAPTER 1. INTRODUCTION

presence of an adversary that is intentionally poisoning demographic data (1.4). To attempt

to deal with these issues, researchers have proposed noise-tolerant fair classifiers that aim to

achieve distributional fairness by incorporating the error rate of demographic attributes in

the fair classifier optimization process itself [41, 149,209].

In other instances, demographic data may not be available at all, which violates the

assumptions of both classical and noise-tolerant fair classifiers. This may occur when

demographic data is unobtainable (e.g., laws or social norms impede collection [9, 31]),

prohibitively expensive to generate (e.g., when large datasets are scraped from the web [56,

110,128]), or when laws disallow the use of protected attributes to train classifiers (e.g., direct

discrimination [211]). For cases such as these, researchers have proposed demographic-blind

fair classifiers that use the latent representations in the feature space of the training data

to reduce gaps in classification errors between protected groups, either via assigning higher

weights to groups of training examples that are misclassified [90], or by training an auxiliary

adversarial model to computationally identify regions of misclassification [121].

Motivated by this explosion of fundamentally different fair classifiers, I present an

empirical, head-to-head evaluation of the performance of 14 classifiers in Chapter 5, spread

across four classes: two unconstrained classifiers, seven classical fair classifiers, three noise-

tolerant fair classifiers, and two demographic-blind classifiers. Drawing on the methodological

approach used by [67] in their comparative study of classical fair classifiers, I evaluate the

accuracy, stability, and fairness guarantees (defined as the equal odds difference) of these 14

classifiers across four datasets as I vary noise in the protected attribute (sex). To help explain

the performance differences that I observe, I calculate and compare the feature importance

vectors for our various trained classifiers. This methodological approach enables me to

compare the performance of these 14 algorithms under controlled, naturalistic circumstances

in an apples-to-apples manner.

Based on my head-to-head evaluation, I make the following key observations:

• Two classical fair classifiers, one noise-tolerant fair classifier, and one demographic-blind

fair classifier performed consistently well across all metrics on our experiments.

• The best classifier for each case study showed some variability, confirming that the

choice of dataset is an important factor when selecting a model.

• One demographic-blind fair classifier was able to achieve equal odds for males and
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females under a variety of ecological conditions, confirming that demographics are not

always necessary at training or testing time to achieve fairness.

I argue that large-scale, head-to-head evaluations such as the one I conducted in this

study are critical for researchers and ML practitioners. My results act as a checkpoint,

informing the community about the relative performance characteristics of classifiers within

and between classes. For researchers, this can highlight gaps where novel algorithms are

still needed (e.g. noise-tolerant and demographic-blind classifiers, based on my findings) and

provide a framework for rigorously evaluating them. For practitioners, my results highlight

the importance of thoroughly evaluating many classifiers from many classes before adopting

one in practice, and I provide a roadmap for choosing the best classifiers for a given real-world

scenario, depending on the availability and quality of demographic data.

1.6 FairCanary: Rapid Continuous Explainable Fairness

ML models that are deployed into the field cannot guarantee consistent performance

over time [179]. One of the reasons for this might be that the underlying data has changed

stochastically. This phenomenon, called drift, has been well-studied in the literature, from

sudden [158] to gradual drifts [194]. Drifts may also be caused by true shifts in the relationship

between the underlying variables (e.g., due to changes in the population over time), sampling

issues [174], or even bugs that impact downstream data collection.

In scenarios where a deployed ML model is making sensitive decisions, I argue that

analyzing the impact of drift on the fairness of the model is equally, if not more, important

than assessing the impact of drift on traditional performance metrics like accuracy and recall.

Regulators are also concerned about this issue: for example, the European Commission’s

recently proposed Artificial Intelligence Act states “[ML] providers should be able to process...

special categories of personal data, as a matter of substantial public interest, in order to

ensure the bias monitoring, detection and correction in relation to high-risk AI systems” as

part of a “robust post-market monitoring system.” [47] Similar regulations have been proposed

in New Zealand [114], Canada [159], the US [2], and the UK [64].

The recognition that drift can negatively impact model performance, coupled with looming

regulations, has spurred the creation of many commercial systems that offer continuous

model monitoring [50]. In general, these systems track live model predictions over time, alert
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the operator if performance metrics change substantively, and compute feature importance

(a.k.a. explanations) for each prediction using methods like LIME [169] or the Shapley

Value [54,135,144]. Some of these monitoring systems incorporate fairness metrics in addition

to traditional performance metrics [157].

In Chapter 6, I present FairCanary, a continuous model monitoring system that offers

two significant capabilities versus state-of-the-art commercial systems that help ensure

model fairness over time. First, FairCanary incorporates a novel model bias quantification

metric called Quantile Demographic Disparity (QDD) that uses quantile binning to measure

differences in the overall prediction distributions over subgroups. Because QDD is measured

over continuous distributions it does not require developers to choose specific (and often ad

hoc) thresholds for measuring fairness, unlike most conventional fairness metrics. Additionally,

QDD does not require outcome labels, which may not be available at runtime. Second,

FairCanary reuses explanations computed for each individual prediction to quickly compute

explanations for its bias metrics. This optimization makes FairCanary an order of magnitude

faster than previous work that has tried to generate feature-level bias explanations [145]. To

illustrate the effectiveness of FairCanary, I present a synthetic case study in Chapter 6 in

which a data integrity error is artificially introduced for women on a particular day, showing

how FairCanary is able to successfully detect and explain this fairness violation.

Regardless of whether ML models are regulated to mandate audits and continuous

monitoring, I argue that ML practitioners have a professional and moral obligation to ensure

that the systems they deploy do not misbehave. Given that issues like drift are known to

occur, and that these issues may cause unfairness and bias, I argue that monitoring systems

should become a standard component of most, if not all, deployed ML-based systems.

I hope that FairCanary (or other monitoring systems that incorporate its capabilities)

will equip companies and institutions with improved tools to monitor, understand, and

mitigate problems in their deployed ML systems, in real time. In turn, I hope that these

capabilities will bring more equity and justice to the individual stakeholders impacted by

deployed models.

1.7 Conclusion

In conclusion, my thesis highlights the need for a holistic approach to implementing

fair machine learning algorithms that takes into account the unique characteristics of the
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real-world context in which they will be deployed. My findings have practical implications

for practitioners who wish to adopt fair machine learning algorithms. I emphasize the

need for practitioners to consider the quality and representativeness of the training data,

use appropriate fairness metrics and unbiased methods to evaluate their performance, be

aware of adversarial actors in their deployment, and continuously monitor and mitigate

potential issues that may arise over time. By adopting a more practice-oriented approach

to implementing fair machine learning, practitioners can help ensure that these algorithms

achieve their intended goals of promoting fairness and equity for all individuals.

Furthermore, in the conclusion of the thesis (Chapter 7), I discuss potential avenues for

future research, namely machine unlearning to remove problematic training data – especially

in the area of copyright violating generative models, investigation of the impact of human

decision makers on ML bias and fairness, and developing actionable policy to ensure fair and

ethical implementation of ML.
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Chapter 2

Background

2.1 Algorithmic Fairness

The use of machine learning algorithms is ubiquitous in the developed world. It has

become an integral part of society, affecting the lives of millions of people. Algorithmic

decisions vary from low-stakes determinations, like product or film recommendations, to high-

impact like loan or credit approval [150], hiring recommendations [30], facial recognition [205]

and prison recidivism [48]. With this direct impact on people’s lives, the need for fair

and unbiased algorithms is paramount. It is critical that algorithms do not replicate and

enhance existing societal biases, including those rooted in differences of race, gender, or

sexual orientation.

Anti-discrimination legislation exists in various jurisdictions around the world. In the

US, anti-discrimination laws exist under the Civil Rights Act [22], and under specific areas

like credit lending 1 and housing2. There have also been efforts to introduce legislation

combating algorithmic bias3. In the European Union, the General Data Protection Regulation

(GDPR) provides for regulations regarding digital profiling, data collection, and a right to

explanation [85]. Under Indian law, quotas for scheduled castes, scheduled tribes and other

backward classes are mandated in public education and government employment.4

1https://www.justice.gov/crt/equal-credit-opportunity-act-3
2https://www.justice.gov/crt/fair-housing-act-1
3https://www.congress.gov/bill/116th-congress/house-bill/2231/all-info
4http://www.legalservicesindia.com/article/1145/Reservations-In-India.html
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2.2 Fair Machine Learning Techniques

In the research community, there is a growing body of work on ways to detect algorithmic

bias [15,79] and develop techniques to build machine learning algorithms that incorporate

fairness in the system design of models itself.

These techniques can be applied at different stages of the machine learning pipeline,

including preprocessing, in-processing, and post-processing techniques [19]. Preprocessing

techniques involve modifying the training data to reduce bias and ensure that the resulting

model is fair. This can include techniques such as oversampling or undersampling to balance

the representation of different groups in the data. In-processing techniques involve changing

the machine learning algorithm itself to ensure that it produces fair outcomes. This can

include adding fairness constraints to the optimization problem, or using techniques such as

adversarial training to reduce bias. Post-processing techniques involve modifying the output

of the machine learning algorithm to ensure that it is fair, such as by adjusting decision

thresholds to ensure that decisions are not based on sensitive features.

Fair machine learning techniques can be applied to a variety of machine learning tasks, for

instance classification [83,98,107,143], causal inference [133,152], word embeddings [32,35],

regression [5, 23], and retrieval/ranking [44,190,216]. In this thesis, I have specifically looked

into the real world challenges of implementing fair classification and ranking.

2.2.1 Fair Classification

In 2012, [60] introduced the idea of fairness in machine learning classifiers by incorporating

protected attributes directly into the model and jointly optimizing for accuracy and fairness.

This led to the development of what I call classical fair classifiers, which incorporate fairness

constraints into classical machine learning algorithms like decision trees and SVMs [140].

Classical fair classifiers are now widely available to practitioners [19,129,172], and have been

adopted by real-world systems [62]. However, these classifiers rely on the assumption that

data about protected attributes is accurate, which may not always be the case in practice [77].

In response to these limitations, researchers have developed what I call noise-tolerant fair

classifiers and demographic-blind fair classifiers. Noise-tolerant fair classifiers jointly optimize

for accuracy and fairness in the presence of uncertainty in the protected attribute data,

and have been developed using approaches such as robust optimization [209], adjusting the

“fairness tolerance” value [122], using noisy attributes to post-process the outputs for fairness
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under conditional independence assumptions [13], estimating de-noised constraints that allow

for near optimal fairness [41], or a combination of approaches [149]. A different approach

for achieving fairness through awareness that is amenable to these strong constraints is

embodied by what I refer to as demographic-blind fair classifiers. These algorithms do not

take protected attributes as input, but they attempt to achieve demographic fairness anyway

by relying on the latent representations of the training data [90,121]. Thus, this approach to

classification still incorporates a general awareness of unfair discrimination and historical

inequity without being directly aware of demographics.

2.2.2 Fair Ranking

Fair Information Retrieval (IR) algorithms have received comparatively less attention

than classification algorithms in the literature. Initial studies that examined fair IR proposed

to solve this in a binary context, i.e., make a ranked list fair between two groups [44,216].

Subsequent work uses constrained learning to solve ranking problems using classic optimization

methods [190]. There are also methods that use pairwise comparisons [24] and describe

methods to achieve fairness in learning-to-rank contexts [148,217].

In industrial settings, researchers at LinkedIn have proposed an algorithm that uses

re-ranking in post-processing to achieve representational parity [74]. However, recent work

by [77] shows how uncertainty due to incorrect inference of protected demographic attributes

can undermine fairness guarantees in IR contexts. Fairness methods that do not require

explicit demographic labels at runtime are an emerging area of focus in classification [121]

and ranking [108,171]. One example that has been studied at large-scale is Shopify’s Fair

Maximal Marginal Relevance (FMMR) algorithm [108].

2.3 Practical Challenges of Fair Algorithms

2.3.1 Shortcomings of Conventional Fairness Metrics

Several conceptual definitions of fairness have been discussed in the literature that,

according to [48], fall into three general classes: (1) anti-classification, where protected features

and their proxies are not used to make decisions, (2) classification parity, where measures of

model predictive performance are equal across protected groups, and (3) calibration, where

the outcomes, conditional on priors, are independent of protected features. Corbett-Davies
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Metric/Framework Related Terms CO? E?

Demographic parity [60] mean difference, demographic parity, disparate treatment ✗ ✗

Conditional statistical parity [49] statistical parity, conditional procedure accuracy, disparate treatment ✗ ✗

Equalized odds [89] equalized odds, false positive/negative parity, disparate treatment ✗ ✗

Equal opportunity [89] equality of opportunity, individual fairness, disparate treatment ✗ ✗

Counterfactual fairness [29,120] counterfactual fairness, disparate treatment, fliptest ✗ ✗

Statistical independence [87] HGR coefficient, independence ✓ ✗

Distributional difference [145] KL divergence, JS Divergence, Wasserstein distance ✓ ✓

Table 2.1: Summary showing whether conventional classes of fairness metrics support Continuous
Output (CO) and feature-level Explanations (E). Metric families are inspired by [140] and the related
terminology is from [52].

and Goel dissect fairness metrics that implement these definitions, claiming that they have

“deep statistical limitations” [48], with several metrics at odds with one another.

Table 2.1 shows an overview of the terminology and limitations of different classes

of fairness metrics in the literature. I refer to the first five frameworks (demographic

parity, conditional statistical parity, equalized odds, equal opportunity, and counterfactual

fairness) as “conventional” fairness metrics because of their prevalence in algorithmic fairness

literature [140] and in the industry [18]. The last two classes, statistical independence and

distributional difference, are relatively niche and new to the discussion.

Conventional fairness metrics have impossibility results [155]. Prior work [48,113,145]

points out that it is impossible to satisfy both classification parity and calibration metrics at

the same time in general, and therefore context becomes key when picking a metric [14, 183].

These statistical limitations extend to group membership limitations. Conventional

fairness metrics require groups and subgroups to be discrete variables and cannot work with

continuous variables [79]. Similarly, “confusion matrix based-metrics” [155] do not support

continuous outputs (which is often the case in problems like regression and recommendation).

This limitation necessitates that practitioners choose thresholds for determining if the given

fairness metric has been violated, but the process for choosing these thresholds is ad hoc and

may lead to wildly different conclusions about the fairness of a model. I show an example of

this phenomenon in Figure 2.1.

The fairness metric I developed for FairCanary (introduced in 1.6) is called Quantile

Demographic Drift (QDD). It is a quantile-based optimized version of the Wasserstein-1

distance metric [206]. It falls under the distributional difference family (see Table 2.1) and

thus lends itself to continuous measurement and explainability.
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2.3.2 Noise in Inferred Attributes

A built-in assumption in many fair algorithms is the presence of accurate demographic

labels. Unfortunately, this may not be true in practice. In contexts like finance and

employment candidate screening, demographic data may not be available due to legal

constraints or social norms [31,211], yet the need to fairly classify or rank people remains

paramount. To bridge this gap, practitioners may infer peoples’ protected attributes using

human labelers [16] or algorithms that take names, locations, photos, etc. as input [1].

There are examples in the literature that highlight accuracy problems with demographic

inference algorithms, perhaps most notably when [36] showed how the accuracy of facial

analysis systems at predicting gender fell when presented with images of darker-skinned people.

[72] note that leveraging crowd workers to produce demographic data is also problematic,

and work on the best ways to collect such data is only beginning to emerge [103].

The interactions between noise in protected attribute data and algorithms trying to

ensure fairness is sparsely studied despite its potentially far-reaching consequences. There

have been studies on the stability of classification algorithms with noisy data [173]. [67]

note that classifiers may not be stable in the face of variations in the training dataset. [46]

analyzed disparity under unobserved protected attributes using demographic inference, but

they do not study the impact of inference on the fairness providing algorithm itself, thus

providing an avenue for closer inspection for the real world outcomes of noise introduced due

to imperfect inference in fair algorithms.

2.3.3 Adversarial Attacks

Adversarial Machine Learning is a growing field of research that aims to develop methods

and tools that can subvert the objectives of ML algorithms. For example, prior research has

highlighted that deep learning models are often not robust when presented with inputs that

have been intentionally, maliciously crafted [40,84,147,160,187,207,212].

Several proposed defenses against state-of-the-art adversarial ML attacks have been

defeated [12, 202], and adversarial examples (i.e., maliciously crafted inputs) have been

shown to transfer across models performing similar tasks [131, 203]. The most promising

defense method, adversarial training, is computationally expensive and imperfect—it results

in decreased standard accuracy while still having a somewhat low adversarial accuracy [70,
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(b) Cumulative Distribution Plot

Figure 2.1: Probability distribution plots for two hypothetical demographic groups. As demonstrated
by the CDF plot on the right, at a threshold of x = 10 the positive prediction probability for both
groups is about 0.95, thereby satisfying Demographic Parity [P (Y ∗)|D1 = P (Y ∗)|D2], but this is
misleading: the Wasserstein distance is nonzero since the two distributions have markedly different
shapes. In contrast, moving the threshold to x = 8 immediately disadvantages one group, since the
positive prediction probability for group 1 falls to 0.6 while for group 2 it only falls to 0.9, thereby
violating Demographic Parity.

119,186]. As such, adversarial ML presents a significant hurdle to deploying neural models

in sensitive real-world systems.

My work considers adversarial ML attacks on IR systems. Previous work has demon-

strated successful attacks on image-to-image search systems [132, 221], allowing an adversary

to control the results of targeted image queries using localized patches [34] or universal

adversarial perturbations5 [125]. Other work has demonstrated attacks on text-to-text re-

trieval systems [167] and personalized ranking systems [92]. Work by [221] hypothesized

that targeted attacks on selected items in a ranked list might be possible using universal

adversarial perturbations. None of these works consider compromising text-to-image models

or group fairness objectives, as I do in this study.

Prior work has demonstrated adversarial ML attacks against fairness objectives of ML

systems at training time. In these attacks, the adversary supplies poisoned training data, which

then results in models that either compromise the accuracy of targeted subgroups [99,141]

or exacerbate pre-existing unfairness between subgroups [45,192]. Specific to classification,

5A Universal Adversarial Perturbation (UAP) is a an adversarial perturbation that generalizes to all
classes of a target classifier, i.e., one patch to untargeted attack as many classes as possible.
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there exists theoretical work that shows how to learn fair models when sensitive attributes

are noisy [41] or corrupted in a poisoning attack [43], but they do not consider ranking.

Adversarial ML attacks at test time—i.e., after training a model using non-malicious

data—that I consider in this work are relatively unexplored in fairness settings. [153] show that

adversarial ML attacks can harm certain subpopulations more than others in classification

tasks. However, while this is an important observation, the harms suggested by this work

may be difficult to realize in practice, as they only involve disparity between examples that

are adversarially corrupted. By contrast, my work shows that test-time attacks can harm

fairness for benign data when launched in a ranking setting.

2.3.4 Drift

Even though a ML model may pass quality control in terms of performance during

training, once deployed on live data the model may encounter issues over time that degrade

or destroy its performance [181]. One of the issues that can arise in deployment is drift, which

is caused by divergence between the data and context under which the model was trained,

and the real-world context into which it is deployed. Data drift occurs when the runtime

data is significantly different from the training data, by virtue of the constant changing of

real world data [33]. Concept drift, in contrast, occurs when the relationship between the

model output and the feature variables change [158,174,194].

Scholars have noted that model performance issues caused by drift extend to questions

of algorithmic fairness [14], i.e., the removal of unfair and unjustified biases from ML and

AI systems. For example, a temporal analysis by [130] showed how the changing of fairness

metrics over time, due to data drift, concept drift, or otherwise, could actually harm sensitive

groups.

The most popular methods for detecting concept drift [27, 69] assume that the labels

for the predicted variable are immediately available. This may not be feasible in practice,

however, especially if the labels correspond to sensitive features of human beings. Furthermore,

even if labels are immediately available, concept drift may have rendered them unreliable,

thus defeating the purpose of using them to detect concept drift. Given these issues, prior

work [59,75,161,222] has measured the drift of prediction distributions as a proxy for concept

drift.

Prediction distribution drift is a new method that FairCanary uses to measure temporal

17



CHAPTER 2. BACKGROUND

unfairness. Instead of measuring the drift of the production prediction distribution against

training prediction distribution, like in [59,75,161,222], I measure the shift in the prediction

distributions between different protected groups. If the prediction distributions for two

protected groups start diverging over time, that is an indication of unfairness.

The primary mitigation against drift is retraining models on fresher data. Retraining

may be expensive, however, so determining when to retrain models is crucial: retraining too

frequently wastes (potentially substantial) resources [20], while waiting too long runs the

risk of performance degradation.

2.3.5 Model Monitoring and Explanations

Continuous model monitoring systems are designed to help developers ensure that de-

ployed models—either classifiers or rankers—perform as expected over time in the face of

problems like drift. A number of commercial tools are available that offer model monitor-

ing [50]. In general, these systems offer the following features:

• Continuously record model inputs and model predictions.

• Measure and report traditional performance metrics over time, like precision, recall,

and accuracy. Some systems also measure bias/fairness metrics.

• Calculate and record feature-level explanations using techniques like LIME [169] or

SHAP [54,135,144], which are useful for post-mortem analysis if problems are observed.

• Generate alarms if particular metrics fall below an operator-specified threshold.

Continuous model monitoring systems are useful for uncovering a variety of issues with models

at deployment time, including issues caused by drift. Once the developer has identified an

issue they can apply mitigations, such as model retraining.

While virtually all of the commercially available monitoring systems explain predictions in

terms of constituent features, none of them (to the best of my knowledge) offer explanations

for measures of unfairness. I argue that it is equally important to understand which particular

input features are responsible for causing unfairness to the model over time, especially given

the “right to explanation” that is increasingly being enshrined in regulation [182].

Unfortunately, the interpretation of fairness metrics in terms of the input features

to the model has not been studied extensively so far. Explaining conventional fairness
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metrics (see Table 2.1) that rely on ground truth labels using Shapley values is possible by

making the assumption that the perturbed values retain the original output label. This

approach can be misleading, however, because the perturbations change the nature of the

instance, and can even create Out-of-Distribution (OOD) points [117]. Another approach,

proposed by [188], explains differentiable distance metrics using integrated gradients, but

this technique only applies to differentiable models, which limits its practical applications.

Finally, [145] developed methods to explain the Wasserstein-1 distance using a Shapley value

formulation. However, this approach also suffers from practical challenges: (1) it requires

that explanations be computed for every possible pair of protected groups, and (2) it is

computationally challenging to compute Shapley values over large samples.
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Chapter 3

When Fair Ranking Meets Uncertain

Inference

3.1 Research Problem

One particular area of concern while exploring the real-world challenges of implementing

fair algorithms is the potential for biases to be introduced when demographic information is

used as an input. This issue has far-reaching implications, as algorithms that produce unfair

or biased outcomes can have a significant impact on individuals and communities.

In this chapter, I will explore the question of how noise in demographic information can

affect the intended fairness of machine learning outcomes. To do so, I will conduct empirical

experiments using simulations and case studies. My goal is to evaluate the effectiveness of

one or more fair ranking algorithms in achieving their stated fairness objectives when given

input data that includes both ground-truth and inferred demographic information.

To accomplish this, I will use a range of fair ranking metrics that encompass different

definitions of fairness. Additionally, I will use error rates drawn from inference algorithms to

assess the impact of noisy demographic information on algorithmic fairness. By evaluating

algorithms and datasets drawn from real-world deployments, I aim to ensure the relevance

and real-world applicability of my findings.

Through these experiments, I hope to gain a better understanding of how demographic

noise can affect the fairness of machine learning outcomes, and to identify strategies for

mitigating these effects. With these goals and guiding principles in mind, I now move on to
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selecting algorithms and metrics.

3.2 Algorithms and Metrics

3.2.1 Fair Ranking Algorithm

The fair ranking algorithm I chose for this study was developed by [74] from LinkedIn.

Their paper presents four different re-ranking algorithms with varying stability but with

one central goal: to achieve the desired distribution of population in the top-ranked results

with respect to one or more protected attributes. At a high-level, the algorithm takes an

unfairly arranged list and an integer K then generates a fairness-aware list of the top K

candidates such that the fraction of candidates in each subgroup matches their fraction in

the underlying population. While other algorithms from prior work [44,190,216] have similar

goals, this algorithm was extensively tested and deployed in LinkedIn’s Talent Search system.

The authors of the paper claim that the deployment led to “tremendous improvement in the

fairness metrics (nearly three-fold increase in the number of search queries with representative

results) without affecting the business metrics, which paved the way for deployment to 100% of

LinkedIn Recruiter users worldwide” [74]. Since my work focuses on the possible breakdown

of fair ranking algorithms in real-world, deployed scenarios, this work was the best fit for my

research purposes.

Of the four algorithms presented in the [74] paper, I chose the Deterministic Constrained

Sorting algorithm or DetConstSort as my benchmark fairness algorithm since it is theoretically

proven to be feasible for protected attributes having a large number of possible attribute

values, unlike the other three greedy fair ranking algorithms in the paper.

DetConstSort creates a ranked list of candidates, such that for any particular rank k and

for any group attributes gj , the attribute occurs at least ⌊pgj .k⌋ times in the ranked list (pgj
= proportion of members in the list belonging to gj). However, unlike other fair ranking

algorithms that greedily pick the best candidate for a particular rank, the DetConstSort

algorithm also strives to improve the sorting quality by re-ranking the candidates that come

above it (so that candidates with better scores are placed higher in the list), as long as the

resultant list satisfies the feasibility criteria. Thus, the algorithm can be conceptualized

as solving a more general interval constrained sorting problem. Since the DetConstSort

algorithm is constrained to be feasible it optimizes the Skew and NDKL fairness metrics,
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which I introduce in the next section.

3.2.2 Metrics for Ranking Evaluation

The second decision I needed to make to accomplish my study was choosing metrics

for evaluating the fairness of representation in ranked lists. Fairness definitions in the fair

machine learning literature include concepts such as equalized odds, equal opportunity,

demographic parity, and treatment parity [60, 89]. These concepts have been adapted

specifically to the domain of ranking, with metrics developed by researchers measuring

the underlying population representation in the top-ranked items [213] and conceptualizing

ranking fairness as an attention or exposure allocation problem to different subgroups [178,190].

Consideration of the cardinality of protected categories is also important, with conventional

binary metrics [116,216] unable to assess fairness between multiple groups. Newer metrics

that compare entire population distributions over an unspecified number of subgroups [74],

or attention-based metrics that deal with population distributions [26, 178,190], are agnostic

to group cardinality and lend themselves to intersectionally fair frameworks [66,79].

I focus on metrics that (1) assess group fairness [60], possibly balanced against secondary

objectives, and (2) are capable of dealing with multiple subgroups (i.e., not just binary

protected versus unprotected classes). For my analysis, I adopted the definition of a subgroup

as a Cartesian product of ≥ 2 groups, as defined in [79]. A subgroup sga1....an is defined as

set containing the intersection of all members who belong to groups ga1 through gan , where

a1, a2...an are marginal protected attributes like race, gender, etc. Notation wise:

sga1×a2×...×an = ga1 ∩ ga2 ... ∩ gan . (3.1)

Note that if the metrics satisfy fairness for a set of subgroups they will also be fair for the

constituent marginal groups [66].

3.2.2.1 Representation-based Metrics.

To get an overall sense of group fairness in a given ranked list, I chose two (slightly

modified) representation-based metrics introduced by [74]. These metrics do not incorporate

attention, i.e., they assess the representation of people from different groups based solely on

how many of those people appear in the list relative to the underlying population. The first

metric is computed per group, while the second is aggregated across groups.
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Skew. Given a ranked list τ , the Skew for attribute value sgi at position k is defined as

Skewsgi@k(τ) =
pτk,sgi
pq,sgi

(3.2)

where pτk,sgi represents the proportion of members belonging to subgroup sgi within the top

k items in the ranked list τ , and pq,sgi represents the proportion of members belonging to

subgroup sgi in the overall population q. Ideally, Skewsgi@k should be close to one for each

sgi and k, indicating that people from sgi are represented in τ proportionally relative to the

underlying population. Skewsgi@k > 1 denotes that the subgroup sgi is over-represented

among the top k candidates, and vice versa when the Skewsgi@k < 1.

Divergence. Given a ranked list τ , the Normalized Discounted Kullback–Leibler (NDKL)

Divergence is defined as

NDKL(τ) =
1

Z

|τ |∑
i=1

1

log2(i+ 1)
dKL(Dτ i ||Dr) (3.3)

where dKL(D1||D2) =
∑

j D1(j)log2
D1(j)
D2(j)

is the KL divergence score of distribution D1 with

respect to distribution D2 and Z =
∑|τ |

i=1
1

log2(i+1) . NDKL can be interpreted as a weighted

average of the logarithm of the Skew scores for all the groups in a ranked list. NDKL values

close to zero indicate that people from all subgroups are represented proportionally in a

given ranked list, since the KL-Divergence of the population between the top k candidates

and the underlying population will be zero. A large difference in the distributions of the

different groups in the top k ranked candidates leads to a higher NDKL score.

3.2.2.2 Attention-based Metrics.

Studies have repeatedly shown that people do not pay equal attention to all items in ranked

lists [151,156]; rather, peoples’ attention decays as they progress down the list, eventually

abandoning the task entirely. This observation suggests that using overall representation

to assess fairness is misleading, since (1) people may not look at all available items and (2)

they pay more attention and are thus more likely to act on higher ranking items. To take

attention into account, I computed attention per group and in aggregate across groups like

in 3.2.2.1.
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Figure 3.1: Attention versus rank for six attention functions.

Attention. In this study, I adopted the geometric distribution to model decay in

attention, similar to prior work by [178]. I compute attention at k as

Attentionp@k(τ) = 100× (1− p)k−1 × (p) (3.4)

where τ is the ranked list and p represents the proportion of attention provided to the first

result. For my experiments I set p = 0.015 because at this value attention decays to zero at

k = 300, which is the value of k I fix for my experiments. Although most prior work in the

Information Retrieval (IR) literature uses logarithmic decay to model attention [190,213], I

did not adopt it because it models attention decay at an unrealistically slow rate [170] and

its shape flattens out at low ranks. Figure 3.1 shows how attention decays as a function of

rank for a variety of values of p, as well as under logarithmic decay.

The ith element in τ has an associated score, denoted sτi , that corresponds to the utility

or relevance of the item, and a subgroup-attribute value, denoted by sgτi . The elements in

the ranked list are arranged in decreasing order of score such that sτi ≥ sτj ∀ i ≤ j. I define

ηsgj ,τ =
1

|sgj |

|τ |∑
i=1

Attentionp@i ∀ sgτi ∈ sgj (3.5)
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Figure 3.2: Sankey plots showing the distribution of ground-truth (left) and inferred (right)
demographic traits for five algorithms. The algorithms tend to mis-classify minorities as Whites.
DeepFace tends to mis-classify Women as Men.

where ηsgj ,τ denotes the mean attention score of the sgj protected attribute for τ and

ABRτ =
minsgj (ηsgj ,τ )

maxsgj (ηsgj ,τ )
(3.6)

where ABRτ or the Attention Bias Ratio for the ranking τ quantifies the disparity between

the groups with the lowest and highest mean attention score (ηsgj ,τ ). ABRτ = 1 is the ideal

score, i.e., all subgroups (and thereby all groups) receive equal attention.

3.2.2.3 Ranking Quality Metrics.

Classic IR literature has proposed several evaluation metrics to measure the ranking

quality of an IR system [138]. I measure two different metrics in my study: a cumulative

gain based metric, and a rank change metric to measure loss in ranking utility.

Normalized Discounted Cumulative Gain. NDCG is a widely used measure to

evaluate search rankings [100].

NDCG(τ) =
1

Z

|τ |∑
i=1

sτi
log2(i+ 1)

(3.7)

where sτi is the utility score of the ith element in the ranked list τ and Z =
∑|τ |

i=1
1

log2(i+1) .
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Rank Change. This metric is a measure of the amount of itemwise distortion from the

original list to the fairness-aware re-ranked list, much like the ranking utility loss measure

in [216]. I define Rank Boost as the boost in the rank of an item due to re-ranking. For a

candidate CA,

Rank BoostCA
= τorg[CA]− τnew[CA] (3.8)

where τorg and τnew denotes the original and re-ranked list respectively. A positive value

indicates that a candidate was assigned a higher rank after re-ranking.

For a subgroup sgj , the Average Rank Change (ARC) is defined as the average of the

absolute rank boosts over all candidates in that subgroup:

ARCsgj ,τ =
1

|sgj |

|τ |∑
i=1

|Rank BoostCi |; where Ci ∈ sgj . (3.9)

Finally, I define Maximum Absolute Rank Change (MARC) for a particular list as the

maximum value of the ARC over all subgroups in that list:

MARCτ = max(ARCsgi,τ ); ∀sgi ∈ |sg|. (3.10)

3.2.3 Demographic Inference Algorithms

The final decision I needed to make for this study was selecting demographic inference

algorithms. My intent is to compare the fair rankings generated by the DetConstSort

algorithm when given ground-truth and inferred demographic information, using the metrics

introduced in 3.2.2, so as to quantify the impact (if any) of mis-classifications.

I chose five diverse inference algorithms that rely on different features and machine learning

techniques. For each algorithm, I computed its confusion matrix when predicting peoples’

ethnicity/race and gender (in one case) using ground-truth data with known demographics. I

evaluated the four algorithms in 3.2.3.1 using voter records from the state of North Carolina,1

which are publicly available records that have the name, address, race, gender, and other

personal information of each registered voter in the state. I evaluated the facial analysis

algorithm in 3.2.3.2 using the FairFace dataset [110].

Using these five algorithms I predicted race/ethnicity (Asian, Black, Hispanic, and White)

and gender (man and woman). I fully acknowledge that these categories are problematic,

1https://www.ncsbe.gov/results-data/voter-registration-data
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however, I adopted them because they are the categories supported by the inference algorithms

from prior work. I discuss the problems and limitations that derive from these categories in

4.5.

Figure 3.2 shows the results of demographic inference using these five algorithms. I used

these confusion matrices in my experiments to intentionally mis-classify data, so as to observe

the effect on fair ranking performance.

3.2.3.1 Name-based Inference.

I chose three algorithms that attempt to predict peoples’ race/ethnicity based on their

name, and I choose one algorithm that does so for gender prediction.

EthCNN. I employed a Convolutional Neural Network (CNN) architecture similar to [112]

to infer peoples’ ethnicity from their names, where the name is represented as a sequence of

characters.

EthniColr. Inspired by the work of [94], I used Ethnicolr,2 the publicly available

library from [193], to predict an individual’s race/ethnicity from their full name. Ethnicolr

employs a neural architecture to model the relationship between the characters in a name

and race/ethnicity.

NamePrism. I used the NamePrism API3 by [214] for race/ethnicity classification.

Motivated by the observation that individuals frequently communicated with peers of similar

age, language, and location [124], Nameprism exploits the homophily phenomena in email

contact lists to create name embeddings that can be used to predict race/ethnicity.

Genderize. To infer binary gender from names I used a service called genderize.4 As

of 2021, the dataset underlying genderize consists of 114,541,298 names collected from 242

countries and territories. While the sources of the names are not revealed [176], the site

claims that the API has been used for data analysis in articles from the Guardian, the

Washington Post, and other outlets.

3.2.3.2 Facial Analysis-based Inference.

I selected one algorithm that infer demographics from images of faces.

2https://github.com/appeler/ethnicolr
3http://www.name-prism.com/
4https://genderize.io/
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Figure 3.3: Population subgroups in my Chess players, Entrepreneurs, and Equestrians datasets.

DeepFace. I used the public wrapper [184] for DeepFace by Facebook [201] to ob-

tain DeepFace’s error rates when classifying race/ethnicity and gender from the FairFace

dataset [110].

3.3 Experiments

In this section I outline the experiments that I performed to examine the relationship

between inferred demographics and fair ranking.

3.3.1 Simulations

In my first experiment, I examined the relationship between demographic mis-classification

and fair ranking guarantees under controlled conditions by performing simulations using

synthetic data. I used a modified version of the synthetic ranked list generation method

discussed in [74], as follows:

1. I manually crafted six ground-truth probability distributions P for the protected

attributes of the simulated people. The distributions, labeled A through F and shown

in Table 3.1, each contained three or four groups. These were the target distributions

of my fairly re-ranked lists.

2. For each probability distribution P , I generated 1,000 people per group gi ∈ P and

assigned each a random utility score si ∈ [0, 1]. I then sorted the combined list of

people in decreasing order of si to generate the ranking τ .
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Distribution NDKL ABR

Dist A (W: 0.33, B: 0.33, A: 0.33) 0.08 0.66
Dist B (W: 0.2, B: 0.3, A: 0.5) 0.08 0.71
Dist C (W: 0.1, B: 0.3, A: 0.6) 0.30 0.86
Dist D (W: 0.1, B: 0.2, A: 0.7) 0.37 0.91
Dist E (W: 0.25, B: 0.25, A: 0.25, H: 0.25) 0.11 0.60
Dist F (W: 0.1, B: 0.2, A: 0.6, H: 0.1) 0.42 0.70

Table 3.1: Fairness metrics computed between the target distribution on the left (Asian, B lack,
H ispanic, and W hite) and randomly generated unfair distributions. NDCG and MARC for the unfair
lists are 1.0 and 0 in all cases.

3. I ran the DetConstSort algorithm discussed in 3.2.1 with the desired distribution P

and τ as inputs to produce the fairness-aware re-ranked list τf . |τf | = 300.

4. I calculated NDKL, ABR, NDCG, and MARC on τ and τf .

5. I repeated steps 2–4 100 times and computed the mean values for my metrics.

6. I repeated steps 2–5 for demographic prediction accuracies varying from 0.1 to 1.0.

For instance, an accuracy of 0.1 meant that the attribute gi was predicted correctly

10% of the time and therefore, in my simulation, I mis-classify gi as any gj where j ̸= i

10% of the time.

Table 3.1 shows the mean fairness metrics for my empirical distributions before running

DetConstSort.

3.3.2 Case studies

To establish the ecological validity of my study, I perform detailed case studies on three

ranked lists obtained from the real world, to measure the potential harms of algorithmic

demographic inference on fairness-aware re-ranking tasks.

3.3.2.1 Datasets.

For my case studies, I required datasets that had both names and images for my inference

algorithms discussed in 3.2.3. I collected these datasets from three publicly available sources

on the internet, as discussed below. All three datasets were downloaded in January 2021.5

5The code and datasets used in this paper can be found at https://github.com/evijit/SIGIR_
FairRanking_UncertainInference.
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Figure 3.4: Distributions of NDKL, ABR, NDCG and MARC scores for fairly-ranked lists as
demographic inference accuracy was varied, based on simulations using synthetic data. For details
about the ground-truth population distributions, refer to Table 3.1.

Chess Rankings. I downloaded a ranked list of chess players sorted by their World

Chess Federation (French: Fédération Internationale des Échecs or FIDE) ratings from the

official FIDE website.6 Along with the ratings, the website also provided the full name,

image, and self-identified binary gender of the players.

Crunchbase Entrepreneurs Ranking. I downloaded a list from Crunchbase7 of me

startup founders who received Series A funding in the last 5 years. I summed the Series A

funds of founders who were part of multiple Series A funding rounds during this time frame.

I collected the name, image, and self-identified binary gender of the founders.

Equestrian Rankings. I downloaded a ranked list of equestrian athletes arranged by

their Fédération Equestre Internationale (FEI) ratings from the official FEI website.8 Along

6https://ratings.fide.com/
7https://crunchbase.com/
8https://www.fei.org/jumping/rankings
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Algorithm Inference Type Race Gender Fair

BASE (Baseline) None Perceived Ground Truth No
ORCL (Oracle) None Perceived Ground Truth Yes
CNNG (EthCnn_Gen) Name EthCNN Genderize Yes
ECLG (Ethnicolr_Gen) Name Ethnicolr Genderize Yes
NPMG (Nameprism_Gen) Name Nameprism Genderize Yes
DPFC (Deepface) Face image DeepFace DeepFace Yes

Table 3.2: The algorithms and sources of demographic data (ground-truth, perceived, inferred)
used in my case studies.
with the ratings, I also collected the full name, image, and self-identified binary gender of

the athletes.

3.3.2.2 Data Annotation and Cleaning.

The datasets I collected in 3.3.2.1 contain ground-truth gender information9 for each

individual, but not race/ethnicity. To obtain race/ethnicity information, I followed a similar

process as the annotation method for the occupations dataset in [42]. I asked workers from

Amazon Mechanical Turk to label the images of faces that I collected. For each image,

I asked workers to choose from among the following races/ethnicities based on their best

judgment: White/Caucasian (Non Hispanic), Hispanic/Latino, Black/African, Asian (Far

East, Southeast Asia, and the Indian subcontinent), or Other/Not sure. Each image was

labeled by three independent workers and I accepted the label with majority support. After

labeling I dropped 6%, 4%, and 2% of people from my lists, respectively, because they lacked

majority consensus. I restricted my task to workers with ≥ 90% approval ratings and my

task paid roughly $12/hour.

I do not refer to the race/ethnicity labels that I obtained from crowd sourcing as “ground-

truth” because there are no phenotypical determinants of race or ethnicity. Instead, I refer to

these labels as “perceived” because they correspond to the perceptions of race and ethnicity

held by my workers, as informed and filtered through their own cultural lenses.

For each ranked list, I cleaned the dataset by removing all entries that did not have a

picture, and then by removing subgroups that had a population less than 1% of the total

length of the list. The final datasets consisted of 3,251 chess players, 3,308 startup founders,

and 1,115 equestrian athletes, respectively. Figure 3.3 shows the population summary

statistics for my three datasets, broken down into intersectional subgroups.

9I consider these gender labels to be ground-truth because they are self-identified. Unfortunately, these
organizations force individuals to identify with a binary gender.
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Figure 3.5: Chess Dataset.
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Figure 3.6: Entrepreneurs
Dataset.
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Figure 3.7: Equestrians
Dataset.

3.3.2.3 Measurement Approach.

To analyze the impact of demographic inference on fairness guarantees in my case studies,

I used the following approach. First, I computed NDKL, ABR, NDCG and MARC on the

original ranked lists that I crawled and the fair re-rankings produced by DetConstSort given

ground-truth gender and perceived race/ethnicity data. I refer to these as “Baseline” and

“Oracle,” respectively, with the latter serving as my best-case fairness benchmark. Next, I

reran DetConstSort after introducing demographic mis-classifications (while using the ground-

truth gender and perceived race/ethnicity data to compute the fairness metrics NDKL and

ABR). The breakdown of the inference algorithms used to produced these re-ranked lists are

described in Table 3.2.

3.4 Results

Having discussed my methods and the structure of my experiments, I now present my

results.

3.4.1 Simulations

I present the results of my simulations in Figure 3.4, from which I make five observations.

First, both of the fairness metrics suffer in proportion to the error rate of demographic

inference. As shown in Figure 3.4, NDKL falls (i.e., approaches representational fairness),

and ABR rises (i.e., approaches attention parity) as the accuracy of demographic inference
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increases. This result is intuitive: I cannot expect DetConstSort to perform at its best when

the underlying demographic data is inaccurate.

Second, I observe that fair ranking performance varies with respect to my six ground-truth

population distributions. DetConstSort was able to achieve low NDKL scores for relatively-

uniform distributions, like A and B, regardless of inference accuracy, but struggled to achieve

high ABR scores at lower accuracies. Conversely, DetConstSort achieves relatively high ABR

scores but low NDKL scores for three-group distributions that had an overwhelming majority

group, like C and D. Distribution E appears to be a worst-case scenario, combining a clear

majority group with three other, much smaller minority groups. These findings demonstrate

that there are complex interactions between the composition of the underlying population,

accuracy of inference, and fairness guarantees.

Third, by comparing the baseline NDKL and ABR values for non-fairness aware rankings

in Table 3.1 to the fairness-aware results in Figure 3.4, I observe that there are cases where the

former has better fairness scores than the latter, depending on the accuracy of demographic

inference. This finding shows that the use of a fair ranking algorithm is not categorically

better than a non fairness-aware algorithm, depending on the accuracy of the underlying

demographic data used for fair re-ranking.

Fourth, I observe no significant drop in the NDCG scores in Figure 3.4c for the fair

ranked lists. This agrees with the findings of [74] and demonstrates that utility need not be

sacrificed to produce fair rankings. The decrease in NDCG scores is greater for population

distributions like D and F that have greater skew, in contrast to more uniform distributions

like A and E.

Fifth, I observe in Figure 3.4d that the MARC values of the list decreases as the inference

accuracy increases. Lower MARC values signal smaller departures in ranking from the

original list, highlighting again the pitfalls of imperfect inference. The decrease in MARC is

less evident for skewed distributions.

3.4.2 Chess Ranking Dataset

I present the results of my first case study using the chess players dataset in Figure 3.5 and

Figure 3.8a–3.8c. The former figure focuses on aggregate metrics, while the latter presents

per-group metrics.

From the NDKL and ABR scores in Figure 3.5a and Figure 3.5b, respectively, I observe
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Figure 3.8: Scores for individual groups in the Chess, Entrepreneurs and Equestrians datasets.

that the “fair” re-rankings that used inferred demographic data as input offer much worse

fairness than the oracle; CNNG even has worse fairness than the unfair baseline. In contrast,

the NDCG scores in Figure 3.5c demonstrate that the fair re-rankings have no impact on the

utility of the results, irrespective of whether fairness is actually achieved.

The MARC scores in Figure 3.5d reveal that DetConstSort had to move candidates

farther to achieve the fair (oracle) ranking for the chess case than in my other case studies

(Figure 3.6d and Figure 3.7d). Further, I observe that DetConstSort moved candidates

shorter distances when it was supplied with erroneous inferences, which helps explain why it

failed to achieve oracle-level fairness.

To delve deeper, I look into the performance of the individual inference algorithms
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across the different sub-groups.10 In the baseline unfair ranking, I observe that White and

Asian males have high skew (Figure 3.8a), and that White males in particular receive a

disproportionate amount of attention (Figure 3.8b). By design, when DetConstSort is given

accurate demographic data it is able to produce a ranking with skew close to 1 for all groups,

and attention is more uniform across the groups than in the baseline. Notably, DetConstSort

had to dramatically increase the ranks of White women to achieve fairness (Figure 3.8c)

because they are underrepresented in the population overall and especially within the top

ranked players.

Conversely, I observe a variety of pathologies when DetConstSort is given inferred

demographic data as input. Overall, I see that the advantaged groups (White and Asian

men) retain their advantage, while non-White non-men rise or fall depending on the specific

error characteristics of the inference algorithms. For example, the EthnCNN (CNNG) race

inference algorithm mis-classified 15 White men and two Asian men as Hispanic men, and

mis-classified three Hispanic men as White men. These errors have the pernicious consequence

of causing actual Hispanic men to be under-represented in the ranking—even below the

baseline representation (Figure 3.8a).

Another example: Asian men appeared frequently at high ranks in the baseline ranking

and thus DetConstSort attempts to decrease their representation. However, the name-based

inference algorithms incorrectly label high-scoring Asian men, e.g., CNNG incorrectly labels

Asian men as Asian (5) or White women (3). This increases the skew of Asian men at

the expense of other groups (Figure 3.8a). Further, by mislabeling high-scoring men as

women, this causes DetConstSort to provide lower rank boosts to women than in the oracle

re-ranking (Figure 3.8c), and thus women receive lower attention than in the baseline and

oracle rankings (Figure 3.8b).

3.4.3 Crunchbase Entrepreneurs Dataset

Of my three case studies, the entrepreneurs dataset is the fairest, i.e., the baseline and

oracle NDKL and ABR scores are closest (Figure 3.6a and Figure 3.6b). Only Asian women

and Hispanic men are over- and under-represented in the baseline ranking relative to the

10The box plots follow standard statistical notation [196]. The box is bounded at the first and third
quartile, and the central line represents the median. The upper whisker denotes the maximum point within
the 3rd quartile + 1.5IQR (Inter Quartile Range), while the lower whisker denotes the minimum point within
1st quartile - 1.5IQR. The white dot denotes the mean.
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underlying population (Figure 3.8d). As expected, when given accurate demographic data,

DetConstSort is able to equalize skew, although attention remains somewhat low for Black

and Hispanic men relative to the other groups (Figure 3.8e).

I observe several notable artifacts in Figure 3.8d. Skew for Asian women increases when

using EthCNN and EthniColor (Figure 3.8d) due to them being mislabeled as White women

or Asian men. Further, being mislabeled into relatively larger groups causes the Asian women

to receive less attention in the re-ranked lists (Figure 3.8e). Likewise, the low skew and low

attention for Hispanic men can be attributed to the fact that all five of the people predicted

to be Hispanic men by the inference algorithms were actually White or Asian men. Black

men are over-represented for Nameprism (NPMG) because it mislabeled three high-scoring

Black men as Asian/White men. To compensate, DetConstSort then moved two low-scoring

Black men to very high ranks (as evinced by the large rank boosts in Figure 3.8f).

3.4.4 Equestrian Ranking Dataset

Our equestrian athlete case study contrasts my chess case study: in both instances I

observe a large fairness disparity between the baseline and oracle (Figure 3.7a and Figure 3.7b),

yet in the equestrian case the inference algorithms result in re-rankings that are closer to the

oracle in terms of NDKL and ABR scores, whereas in chess the inference-driven re-rankings

are closer to the baseline.

However, just because the inference-driven re-rankings are relatively fair on average does

not mean individual groups are not being stigmatized. As shown in Figure 3.8g and 3.8h,

Asian men have low skew and low attention. The oracle mitigates this issue, but the inference

algorithms routinely mislabel Asian men and White men, thus resulting in Asian men having

low skew and attention in the “fair” re-rankings as well. Nameprism is the exception: it

predicted six out of seven Asian men correctly. Conversely, I observe cases where White

women were mislabeled as Asian men, causing DetConstSort to dramatically increase their

rank (Figure 3.8i), leading to cases where White women become over-represented.

3.5 Discussion

In my study, I investigated the impact of inferred demographic data on algorithmic

fairness in fair ranking algorithms. Through empirical experiments using real-world datasets

and fair ranking metrics, I found that using inferred demographic data can harm vulnerable
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groups and invalidate fairness guarantees. This highlights the need for caution when using

such data in fairness-aware algorithms and for further research to identify effective strategies

for mitigating its impact.

You study noise aware and demographic free algos later, so point at that chapter rather

than being hypothetical. – Christo

I suggest the possibility of using uncertainty-aware algorithms as a solution, which I further

discuss in Chapter 5. Another potential solution is to intentionally collect demographic data,

but this must be done with care and consideration to avoid reifying oppressive structures and

respecting individuals’ autonomy. Overall, my study emphasizes the challenges of achieving

algorithmic fairness in the presence of demographic inference and the need for further research

to identify effective strategies for achieving fairness in machine learning algorithms.

3.6 Limitations

The primary limitation of my work concerns how I operationalize gender, race, and

ethnicity. Gender is not binary, but the sources of data I rely on (ground-truth and inferred)

only support binary labels. Similarly, my work is constrained by the race and ethnicity

categories that are supported by available inference algorithms. These categories lack nuance

and reify problematic political hierarchies. Future work in this space should broaden the

space of gender, racial, and ethnic categories that are critically examined [88,97], as well as

examine other marginalized communities.
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Chapter 4

Subverting Fair Image Search with

Generative Adversarial Perturbations

4.1 Research Problem

Fairness and adversarial robustness are two important concerns in the field of machine

learning. While fair machine learning techniques have gained popularity in recent years as

a way to mitigate biases and ensure equitable outcomes, the vulnerability of fair machine

learning models to adversarial attacks remains an open question. The field of adversarial

machine learning has shown that seemingly accurate models can display surprising brittleness

when presented with maliciously crafted inputs, known as adversarial examples, which can

cause models to make incorrect predictions or behave in unexpected ways. The intersection

of these two concerns has received relatively little attention, and it is unclear whether fair

machine learning techniques are vulnerable to adversarial attacks that could subvert their

fairness guarantees.

In this chapter, I investigate the research problem of whether external adversaries can

make fair ranking models behave unfairly without having access to the model or training

data. To address this problem, I present a case study in which I develop and attack a

fairness-aware image search engine using images that have been maliciously modified with

adversarial perturbations. Through extensive experiments, I demonstrate that my attacks

can successfully subvert fairness guarantees in the context of fair image retrieval, even under a

highly restricted threat model. The results of this chapter highlight the potential vulnerability
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Figure 4.1: A diagram showing my attack approach. (a) shows example search results from an image
search engine for the query “tennis player”. This search engine attempts to provide demographically-
fair results, and at this point no images in the corpus have been adversarially perturbed. (b) as
this search engine crawls and indexes new images from the web, it collects images that have been
adversarially perturbed using a GAP model. I show a real example of one image before and after
applying the generated perturbation, which causes the Deepface model [201] to misclassify this
person’s skin tone. (c) in response to a future query for “tennis player”, the retrieval model will
identify relevant images, some of which are perturbed. The fairness-aware ranker (the target of the
attack, highlighted in red) mistakenly elevates the rank of an image containing a light-skinned male
(also highlighted in red) because it misclassifies them as dark-skinned due to the perturbations.

of fair machine learning techniques to adversarial attacks and the need for further research

on the robustness of these techniques. By shedding light on these vulnerabilities, I aim to

motivate the development of mitigation strategies to make fair machine learning models more

robust against adversarial attacks.

4.2 Methodology

I now present the plan for my study. First, I introduce my application context and the

threat model under which an attacker will attempt to compromise the application. Second,

I discuss the IR models and algorithms underlying my fairness-aware image search engine.

Third, I discuss my strategy for attacking this search engine using GAPs.

4.2.1 Context and Threat Model

In this study, I consider the security of a fairness-aware image search engine. This search

engine indexes images from around the web (either automatically via a crawler or from

user-provided submissions) and provides a free-text interface to query the image database.

Examples of image search engines include Google Image Search, iStock and Getty Images,

and Giphy. In my case, the image search engine attempts to produce results that are both
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relevant to a given query and fair, according to some fairness objective. One example fairness

objective is demographic representativeness, i.e., for search results that contain images of

people.

I consider a malicious image curator (e.g., Imgur, 4chan, or similar) with a large database

of perturbed images that are eventually scraped or uploaded into the victim image search

engine’s index.1 My adversarial image curator’s goal is to perturb the images in their database

to subvert the fairness guarantees of the downstream retrieval system. I assume that the

adversary does not have any knowledge of the internals of the ranking system (e.g., what

retrieval model is used, other images in the index, or which fairness algorithm is used).

This threat model constitutes a strict, but realistic, limitation on my adversary. Notice

that this threat model would also apply if the image search engine was compromised, giving

the adversary access to underlying models and the entire dataset of images. I consider both

adversaries in my experiments. I also note that, if the adversary only seeks to target a small

set of queries, they need only control a fraction of the images matching each query, rather

than a fraction of the entire image database. This is useful for the adversary in the case that

not all queries are equally sensitive.

4.2.2 Building an Image Search Engine

I now turn my attention to building a realistic image search engine that will serve as the

victim for my attacks.

4.2.2.1 Image Retrieval from Text Queries

The first choice I make for this study is to select an image retrieval model. There are

several frameworks for image retrieval in the literature, starting from tag-based matching [123]

to state-of-the-art vision-language transformers [126,134]. For the purpose of this paper, I

used a MultiModal Transformer (MMT) [73] based text-image retrieval model. This model

consists of two components: a fast (although somewhat lower quality) retrieval step that

identifies a large set of relevant images, followed by a re-ranking step that selects the best

images from the retrieved set. Concretely, the user provides a string q that queries into a

database D of n images. For the retrieval step, the query string is encoded with an embedding

1An adversarial image curator is also the threat model assumed for clean label poisoning attacks [185,204].
This adversarial image curator may perturb copies of images taken from the web or original images that they
author. This setup is also used by [187] as a defensive method against unauthorized models.
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function fq to produce an embedding vq, and all images in D have pre-computed embeddings

from an embedding function fI . The cosine distance between vq and all embeddings of D

are computed to collect some large set Dq of size n′ ≤ n plausible image matches. These

images are then ranked according to a joint model fj that takes both the query and an image

as input, returning scores {si}n
′

i=1 indicating how well each image Dq[i] matches the query.

These scores are used to produce the final ranking.

Note that the MMT model is not designed to be “fair” in any normative sense. To achieve

fairness, results from the model must be re-ranked, which I describe in the next section. Thus,

the MMT model is not the target of my attacks, since it is not responsible for implementing

any fairness objectives.

4.2.2.2 Fairness-aware Re-ranking

The second choice I make for this study is selecting an algorithm that takes the output

of the image retrieval model as input and produces a fair re-ranking of the items. In fairness-

aware re-ranking, a ranking function fr(D, q) is post-processed to achieve fairness according

to some subgroup labels on the dataset D = {si, xi}ni=1, where si denotes the score of the ith

item (the heuristic score according to which the list is sorted) and xi denotes the item to be

ranked.

The re-ranking algorithm I adopt is Fair Maximal Marginal Relevance (FMMR) [108],

which was developed and used at Shopify for representative ranking of images. FMMR

builds on the Maximal Marginal Relevance [39] technique in IR that seeks to maximize the

information in a ranked list by choosing the next retrieved item in the list to be as dissimilar

to the current items present in the list as possible. MMR introduces a hyperparameter that

allows the operator to choose the trade-off between similarity and relevance.

FMMR modifies the “similarity” heuristic from MMR to encode for similarity in terms

of demographics, with the idea being that the next relevant item chosen to be placed in

the re-ranked list will be as demographically different from the existing images as possible.

Similarity is calculated using image embeddings, for which I examine three models: Faster

R-CNN [168], InceptionV3 [199], and ResNet18 [91]. I fix the trade-off parameter λ at 0.14

as that is the value used by [108] in their FMMR paper.

It is notable that FMMR does not require demographic labels of people in images to

perform fair re-ranking, since it uses a heuristic that only relies on embeddings. Indeed,
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FMMR comes from a class of fair ranking algorithms that all use the inherent latent

representations of the objects for their re-ranking strategy [108, 171]. That said, since

FMMR attempts to maximize the distance from the centroids of the embeddings of different

demographic groups, it can be thought of as performing indirect demographic inference on

individuals in images.

Additionally, I also evaluated my attacks against a second fairness-aware re-ranking

algorithm, DetConstSort [74], developed by and deployed at LinkedIn in their talent search

system. Unlike FMMR, DetConstSort explicitly requires demographic labels for the items it

is trying to fairly re-rank. However, prior work [77] shows that DetConstSort has significant

limitations when demographic inference is used rather than ground-truth demographic labels,

making it unfair even without perturbed images. As a result, evaluating an attack against

DetConstSort is not meaningful, and I defer my discussion of DetConstSort to 4.5.4.

4.2.3 Attack Construction

Having described my search engine, I are ready to turn my attention to my attack. First,

I introduce the demographic inference models (Deepface [201] and FairFace [110]) that I

use to train my attack. Next, I describe how I generate adversarial perturbations from a

demographic inference model, modifying images in a way that is imperceptible to human

eyes, yet significant enough to fool the fair re-ranking algorithm of my search engine.

4.2.3.1 Demographic Inference Algorithms

For large-scale datasets such as images scraped from the web, demographic meta-data

for people in the images is (1) not readily available and (2) prohibitively expensive to collect

through manual annotation [10,31]. Pipelines using demographic inference are commonly

used in practice when demographic labels are not available. For example, the Bayesian

Improved Surname Geocoding (BISG) tool is used to measure fairness violations in lending

decisions [3,37], and it relies on inferred demographic information. This makes attacks on

demographic inference models a natural candidate for adversely affecting ranking fairness.

I consider two image demographic inference models to train my attacks:

1. Deepface [201] is a face recognition model for gender and race inference developed by

Facebook. I use its public wrapper [184], which includes models fine tuned on roughly

22,000 samples for race and gender classification.
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2. FairFace [110] is a model designed for race and gender inference, trained on a diverse

set of 108,000 images.

Since both of these models infer race/ethnicity, I used a mapping to infer skin tone, since

I could not find commercially available algorithms to infer skin tones from human images.2 I

also use these models to infer demographics as input to the DetConstSort algorithm, matching

the pipeline of [77], which I discuss in 4.5.4.

4.2.3.2 Subpopulation Generative Adversarial Perturbations

Recall my adversarial image curator’s goal: to produce a database of malicious images

that, when indexed by my image search engine, undermine its purported fairness guarantees.

Concretely, this means fooling the fair re-ranker such that it believes a given set of search

results is fair across two or more subgroups, when in fact the results are unfair because some

subgroups are under- or over-represented. Additionally, these malicious images must (1)

retain their relevance to a given query and (2) not be perceived as “manipulated” to human

users of the search engine.

Prior work (see 2.3.3) has demonstrated that neural image classification models can be

fooled by adding adversarial perturbations to images. At a high-level, the adversary’s goal

is to train a model that can add noise to images such that specific latent characteristics of

the images are altered. In my case, these altered characteristics should impact the image

embeddings calculated by the image embedding model (e.g., InceptionV3) that FMMR relies

upon to do fair re-ranking.

Running an adversarial perturbation algorithm on each of the images in the adversary’s

database would be prohibitive, as these algorithms involve computationally expensive opti-

mization algorithms that are not practical at the scale of an entire database. I avoid this

limitation by training a Generative Adversarial Perturbation (GAP) model [163]. A GAP

model fGAP takes a clean image as input and returns a perturbed image that is misclassified

by some target model ftarg. This replaces the per-image optimization problem with a much

less expensive forward pass of fGAP. Training the GAP is a one time expense for the

adversary, amortized over the large number of image perturbations done later. Universal

Adversarial Perturbations (UAPs) [146] are another approach to amortizing runtime, but

2The mapping I used is: White, East Asian, Middle Eastern → Light, and Black, South Asian, Hispanic
→ Dark. I acknowledge that this is a crude mapping, but it enabled me to train a successful attack.
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require all images to be the same dimensions—an unrealistic assumption for real-world image

databases.3

Having motivated the choice of a GAP model for my attack, I now consider the problem

of impacting fairness by attacking the fair re-ranking algorithm used by a victim search

engine. I choose to design a GAP to target a demographic inference model fDI.4 This will

produce perturbations that, to a deep image model, make an image of a person from one

demographic group appear to be from a different demographic group. This attack would

heavily impact a demographic-aware re-ranking algorithm such as DetConstSort [74] (see

4.5.4) if it used an accurate demographic inference algorithm to produce annotations.

Although FMMR does not use annotations, I show in 5.4 that my attack is still successful

at compromising FMMR’s fairness guarantees. My attack can be seen as an application of

the transferability property of adversarial examples. Additionally, training my GAP against

a demographic inference model causes my attack to be independent of the ranking algorithm

and image corpus used by the victim search engine, both of which are strong adversarial

assumptions.

In designing my GAP to compromise fairness, I first note that an attack that simply forces

a fDI to make arbitrarily many errors may not impact fairness. For example, suppose the

image database contained two subpopulations, the advantaged class A and the disadvantaged

class B. Suppose the attack causes fDI to misclassify all members of B as A and all members

of A as B. This is the best possible result of an attack on the demographic inference algorithm,

but results in no changes to a fair ranking algorithm—it will simply consider A to be the

disadvantaged class, and thus produce the same ranking! For this reason, my adversary

must incorporate subpopulations into the attack. To do so, I propose the Class-Targeted

Generative Adversarial Perturbation (CGAP):

Definition 1 (CGAP) I consider a loss function ℓ, target model ftarg, distribution D over

inputs x and outputs y. The adversary provides a source class ys and target class yt. Then

the CGAP model fCGAP is a model that takes as input an image x and returns an image x′,

3A UAP can also be seen as a GAP, where fGAP(x) = x+ δ for a fixed δ. Therefore, I expect that a GAP
will perform strictly better than a UAP.

4Recall that, per my threat model in 4.2.1, the attacker does not know what fair re-ranking algorithm is
used by the victim and thus cannot train against it directly.
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Search Queries Attack Training Embedding Training Objective Attack Probability Top k

“Tennis Player”
“Person eating pizza”
“Person at Table”

Deepface
FairFace

F-RCNN
InceptionV3
ResNet

Any→Light Men
Light Men→Any
Dark Men→Light Men
Light Men→Dark Men

0.2, 0.5, 0.7, 1.0 10, 15, 20..., 45, 50

Table 4.1: Variables and hyperparameters I used for evaluating my attack.

minimizing the following loss functions:

ℓsCGAP(D) = E(x,y)∼D[ℓ(fCGAP(x), yt; ftarg)|y = ys],

ℓrCGAP(D) = E(x,y)∼D[ℓ(fCGAP(x), y; ftarg)|y ̸= ys].

That is, the CGAP should force the demographic inference model to misclassify samples of

class ys to class yt, while maintaining its performance for samples not from class ys.

I also consider two extensions of this definition. First, I permit the adversary to target

multiple classes at once. In the extreme, an adversary may want all samples to be classified to

the same class (this approach is proposed by [163]). For a demographic inference algorithm,

all samples having the same demographic label will cause the fair re-ranking system to have

similar performance to an unfair ranking system, as all points will appear to fall into the

same subpopulation. The second extension is the untargeted attack, where the CGAP simply

increases loss for points from class ys, inducing arbitrary misclassifications. Simultaneously

making both relaxations recovers the original untargeted GAP approach. I experiment with

both relaxations independently, as well as multiple instantiations of CGAP as defined above.

4.3 Experiments

In this section I introduce the dataset I used for my evaluation, describe the setup for

my experiments, and define the metrics I use to evaluate my attacks.

4.3.1 Dataset, Annotation, and Preprocessing

I use Microsoft’s Common Objects in Context (MS-COCO) [128] as my retrieval dataset,

since it contains a variety of images with variable dimensions and depths. This closely mimics

what a real-world image search dataset might contain.
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To specifically measure for demographic bias, I filter the dataset, keeping only images

that contain people. I also need the images to have demographic annotations for fair ranking,

so I use an annotated subset of the COCO 2014 dataset, constructed by [220]. Similar to

prior work [42,77], Zhao et al. crowdsource skin color (on the Fitzpatrick Skin Type Scale,

which the authors simplified to Light and Dark) and binary perceived gender expression for

15,762 images. For the purposes of my experiments I only considered the 8,692 images that

contain one person. After filtering, my final dataset consisted of 5,216 Light Men, 2,536

Light Women, 714 Dark Men, and 226 Dark Women.

4.3.2 Experimental Setup

As a starting point for my experiments, I need to collect ranked lists from my baseline,

unfair retrieval system, as described in 4.2.2.1. To do so, I run three different search queries

on the retrieval system: “Tennis Player”, “Person eating Pizza”, and “Person at table”. I chose

these queries because they all reference a human being, are ethnicity and gender neutral,

and are well-supported in the COCO dataset (I picked popular object tags, see 4.3.2.1). I set

the upper bound in the baseline retrieval system to be 200 images. The three queries return

131, 75, and 124 images, respectively, along with their relevance scores.

I show the distribution of the relevance scores and the skin color/gender distributions

of the images within the top 40 search results for each query in Figure 4.2. As also shown

by [220], Light Men comprise the overwhelming majority in all three lists, and they also have

high relevance scores across the board, meaning that the retrieval system places Light Men

near the top of the search results. I call these lists the baseline lists.

I also need to produce fair versions of the baseline lists. To do so, I pass the baseline lists

for each of my three queries through FMMR with the three embedding algorithms, without

any adversarial perturbations. I refer to the nine lists obtained via the fair re-ranker (three

queries times three image embedding models) as the oracle lists.

To train my adversarial attacks, I first remove the 330 images in my oracle lists from the

original dataset, leaving 8,362 images. These 8,362 images were then split randomly into

training and testing sets in an 8:2 ratio to train CGAP models for all possible combinations

of training objectives and demographic inference algorithms fDI (described in detail below).

5Dark-skinned women do appear in the search results for the query “female tennis player”. This seems to
reflect stereotypical bias [71] within the learned-word representations in the MMT model.
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Figure 4.2: Utility/Relevance score and group size distribution within the top 40 baseline search
results for three queries. The black dots represent the average utility score for that group, while the
circle size represents the group size. No dark-skinned women appear in the top 40 baseline results for
the “tennis player” query.5

I ran my experiments on PyTorch with a CUDA backend on two NVIDIA RTX-A6000 GPUs,

and trained CGAP models for 10 epochs each, with the L∞ norm6 bound set to 10.

I describe my different training and inference combinations below. Table 4.1 shows a

summary of the different settings involved during the training and testing of my CGAP

attacks.

4.3.2.1 Choice of Queries

To facilitate my experiments, I chose to select search query terms that would provide a

sizeable list of images. To do so, I looked at the list of terms in the COCO image captions

(excluding English stop words and words related to ethnicity or gender). The following

table shows some top terms. From this information, I composed my three queries given that

“sitting”, “tennis”, “table”, “person”, “pizza”, etc. were among the most popular terms.

4.3.2.2 Embedding Algorithm

As I discuss in 4.2.2.2, FMMR requires image embeddings. The authors of the original

paper used a pretrained InceptionV3 model, which I also adopt. Additionally, I test the

performance of FMMR using embeddings generated by pretrained Faster R-CNN and ResNet

models. These models are trained for standard image classification tasks and have no inherent

concept of demographic groups.

6L∞ is the absolute distance in pixel space any one pixel is changed, i.e. a pixel can at most change by a
value of 10 in each color channel.
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Term Count

sitting 55084
standing 44121
people 42133
holding 29055
large 25305
person 25123
street 21609
table 20775
small 20661
tennis 19718
riding 18809
train 18287
young 17767
red 17522
baseball 15362
pizza 11163

Table 4.2: The most common (gender or race unrelated) caption terms in the evaluation dataset.

4.3.2.3 Attack Training Algorithm

As detailed in 4.2.3, I train CGAP models to induce adversary-selected misclassifications in

two target demographic inference models, denoted as fDI : Deepface [201] and FairFace [184].

These models are trained for demographic inference, and so do not overlap in training

objective with the image embedding models for FMMR. The only similarity in architecture

between the demographic inference and FMMR embedding models is that FairFace uses a

ResNet architecture.

4.3.2.4 Training Objectives

As discussed in 4.2.3.2, I select certain subpopulations to be systematically misclassified

by the two fDI described above. The fmy CGAPs I train induce misclassifications with the

following source-target pairs: Any→Light Men, where every subgroup was perturbed to be

predicted as Light Men; Light Men→Any, where only Light Men are arbitrarily misclassified;

Dark Men→Light Men, where only Dark Men are misclassified as Light Men; and Light

Men→Dark Men, where only Light Men are misclassified as Dark Men.
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4.3.2.5 Attack Probability pr

It is a strong assumption that an adversary can perturb the entire image database of

a victim search engine. This is only possible if the search engine itself is malicious or it is

utterly compromised. Instead, I measure the effect of my attack when the attacker may

perturb pr = 20%, 50%, 70% and 100% of the image database relevant to each query. If a

small number of queries are targeted, only few images are required to run the attack.

4.3.2.6 Top k

Ranking is very sensitive to position bias [77,178], so I measure with different lengths

k of the top list, ranging from top 10 to top 50, to gauge my attack’s impact on the fair

ranking algorithms as final list sizes vary.

4.3.3 Evaluation Metrics

To evaluate the impact of my attacks, I use three metrics that aim to measure (1)

representation bias, (2) attention or exposure bias, and (3) loss in ranking utility due to

re-ranking. Additionally, I introduce a summarizing meta-metric that enables me to clearly

present the impact of my attacks with respect to each metric.

4.3.3.1 Skew

The metric I use to measure the bias in representation is called Skew [74, 77]. For a

ranked list τ , the Skew for attribute value ai at position k is defined as:

Skewai@k(τ) =
pτk,ai
pq,ai

. (4.1)

pτk,ai represents the fraction of members having the attribute ai among the top k items in τ ,

and pq,ai represents the fraction of members from subgroup ai in the overall population q. In

an ideal, fair representation, the skew value for all subgroups is equal to 1, indicating that

their representation among the top k items exactly matches their proportion in the overall

population.
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4.3.3.2 Attention

Even if all subgroups were fairly represented in the top k ranked items of a list, the

relative position of the ranked items adds another dimension of bias—unequal exposure.

Previous studies [151, 156] have shown that people’s attention rapidly decreases as they scan

down a list, with more attention given to the higher ranking items, ultimately dropping to

zero attention.

In this study, I model attention decay using the geometric distribution as done in prior

work by [178]. I compute attention at the kth rank as:

Attentionp@k(τ) = 100× (1− p)k−1 × (p) (4.2)

where p is the fraction of total attention given to the top search result. The choice of p is

application specific—for this paper I fixed p to be 0.36, based on a study [86] that reported

that the top result on Google Search receives 36.4% of the total clicks. I then calculate the

average attention per subgroup:

Average attentionai,τ =
1

|ai|

|τ |∑
k=1

Att(k) where aτk = ai. (4.3)

Ideally, in a perfectly fair ranked list, all subgroups should receive equal average attention.

4.3.3.3 Normalized Discounted Cumulative Gain.

NDCG is a widely used measure in IR to evaluate the quality of search rankings [100]. It

is defined as

NDCG(τ) =
1

Z

|τ |∑
i=1

sτi
log2(i+ 1)

(4.4)

where sτi is the utility score from the MMT retrieval model of the ith element in the ranked

list τ and Z =
∑|τ |

i=1
1

log2(i+1) . NDCG scores range from 0 to 1, with the latter capturing

ideal search results.

4.3.3.4 Summarizing Metric

For the purpose of quantifying how much unfair advantage my attacks confer on members

of the majority class relative to all other classes, I define a new meta-metric called Attack
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Effectiveness η. For a given metric m ∈ { Skew, Attention } and a subgroup g, it is defined

as:

η(m, g) = % change in m for subgroup g −

minimum % change in m over other subgroups.
(4.5)

I chose this formulation of η for two reasons. First, comparing percentage changes makes

the metric scale invariant, which is useful since group sizes vary. Second, comparing to the

group that gets the minimum boost ensures that the metric presents the widest fairness

disparity, regardless of the total number of groups.

For the purposes of this paper, I set g as Light Men, because they are socially and

historically the most advantaged group, and a large η for Light Men indicates that the attack

causes their ranking to be unfairly boosted relative to the least privileged group. To make

sure that the fairness impacts I observe are due to the effectiveness of my attack on the

re-ranking algorithms only, the η values and the % change in NDCG are all measured against

the oracle (i.e., fairly re-ranked) lists. Because I compare against the oracle list, all results

with attack probability pr = 0 will have η = 0.

4.4 Results

In this section, I evaluate the impact of my attacks on the fairness guarantees of FMMR.

For each set of results I examine how attack effectiveness varies for one particular variable

(e.g., top k, image embedding model, etc.) as the attack probability pr (i.e., the fraction of

images under adversarial control) varies. When focusing on a particular variable, I present

results that are averaged across all other variables and all three of my queries.

4.4.1 Top k and pr

I begin by evaluating the impact of my attacks as I vary the length of the top list k and

the fraction of images in the query list under adversarial control pr, plotted in Figure 4.3.

Varying pr has the expected effect: as the adversary has more control over the image

database, attacks become more effective, i.e., η for skew and attention increase. When

the adversary is able to control 100% of images in the query list, attacks are especially
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Figure 4.3: Attack effectiveness as a function of attack probability pr and list length k. Higher η is
a more effective attack, i.e., the search results are more favorable to light-skinned men. Unfairness
increases as pr increases, yet there is almost no impact on ranking quality (NDCG). As k increases
skew is less impacted but attention is impacted somewhat more.
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Figure 4.4: Attack effectiveness is stable when the model used for the FMMR embedding is
changed. ResNet embeddings are slightly more robust to attack and F-RCNN are slightly less robust.
Interestingly, the ResNet’s robustness is in spite of it having the most similar model architecture to
FairFace.

strong—increasing attention unfairness by over 50% for some values of k. Even with only

20% control, the adversary can increase attention unfairness by ∼30%. Recall that pr

measures the fraction of each query list that is compromised, so as few as 35 images can be

compromised at pr = 0.5 (for the "Person eating Pizza" query).

Varying k also impacts ranking fairness. As k increases, attention unfairness increases

modestly and skew unfairness decreases. That skew unfairness decreases with k indicates

that the composition of items in the search results becomes fairer as the length of the list

grows. However, my attack is able to cause FMMR to reorder the list such the top-most items

remain unfair regardless of k, which is why attention unfairness exhibits less dependency on

k.
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4.5 Limitations

The primary limitation of my work concerns how I operationalize gender, race, and ethnicity.
Gender is not binary, but the sources of data I rely on (ground-truth and inferred) only

support binary labels. Similarly, my work is constrained by the race and ethnicity categories
that are supported by available inference algorithms. These categories lack nuance and reify

problematic political hierarchies. Future work in this space should broaden the space of
gender, racial, and ethnic categories that are critically examined [88,97], as well as examine

other marginalized communities.

Figure 4.5: Attack effectiveness is relatively stable when the GAP training objective is changed.

Lastly, I observe that my attacks are stealthy. Regardless of k or pr, NDCG never

changes more than 0.7%, meaning that my attack had effectively zero impact on search result

relevance.

4.5.1 Choice of Training Objective

I evaluate my attack’s impact on fairness with fmy CGAP models: one that misclassifies

Dark Men as Light Men, one for misclassifying Light Men as Dark Men, and relaxed CGAP

models that misclassify all people as Light Men and all Light Men as other groups. I show

these attacks’ effectiveness in Figure 4.5.

Each of these attacks performs similarly well at harming fairness in terms of skew and

attention, and remaining stealthy in terms of NDCG. One surprising observation is that

misclassifying Dark Men as Light Men performs similarly to the exact opposite attack: in

both cases, Light Men end up with an significant, unfair advantage. I explain this seeming

contradiction with an example in Figure 4.6. In essence, using a GAP to misclassify people

from a minority group into the majority group reduces the minority group’s overall share
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Top 6

Skew

1.50 0
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1.25 0.5

Light Dark Light → Dark Dark → Light

Figure 4.6: An example showing how incorrect group allocation in any direction always harms the
minority group members in fair ranking. (a) shows a baseline unfair list, with all people sorted by
relevance to the query and no dark people in the top 6. (b) shows the fair ranking produced by
FMMR, with the same proportion of light and dark people in the top 6 as the overall population. In
(c), light people’s images are perturbed using a GAP so that half of them are grouped with dark
people. FMMR moves the most relevant dark people into the top 6 to make the list fair, but in
this case the most relevant “dark” people are really light skinned. In (d), half of the dark people
are perturbed using a GAP to be grouped as light people. To FMMR, this appears to reduce the
overall population of dark people, so it only needs to move one dark person into the top 6 to make
the list proportionally fair. Note that if all light people were grouped as dark or all dark people were
grouped as light, the ranking would remain the unfair baseline shown in (a).

of the population. Since group fairness in this case is based on the overall population

distribution, this causes FMMR to rerank fewer minority group members into the top of the

search results.

Based on the results in Figure 4.5, it appears that there is no way to advantage a minority

group with my attacks.

4.5.2 Choice of Attack Training Algorithm

I measure my attacks’ effectiveness when the GAP models are trained on Deepface

and FairFace demographic inference models. I observe that attack effectiveness is largely

independent of the choice of inference model, and all attacks remain stealthy. I defer a plot

of the results to the supplementary material, in Figure 4.8.

4.5.3 Choice of Query

Lastly, I examine the effectiveness of my attacks against three different queries and plot

the results in Figure 4.7. I observe that all attacks were successful, but that effectiveness
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Query 1: 'Tennis Player' Query 2: 'Person Eating Pizza' Query 3: 'Person at Table'

Figure 4.7: Attacks are effective against all three of my queries, but the effectiveness varies in
relation to the underlying population and utility score distributions (see Figure 4.2).

varies by query. The differences in attack effectiveness are explained by the underlying

distributions of population and utility scores (see Figure 4.2). The “tennis” results exhibit

the most unfairness post-attack because they were most unfair to begin with, i.e., the

difference in utility scores between Light and Dark skinned people was greatest in the “tennis”

results as compared to the other queries. In contrast, the “pizza” results exhibit the most

robustness to attack in terms of attention because these were the only results among the

queries where minority people had higher utility scores than majority people in the baseline

results (Figure 4.2).

4.5.4 Additional results: comparison between DetConstSort and FMMR

In this section I compare the performance of two fair re-rankers in the presence of my

GAP attack. I have already described the details of the first algorithm, FMMR, in 4.2.2.2.

4.5.4.1 DetConstSort

The second algorithm, DetConstSort [74], was developed by and is currently deployed

at LinkedIn in their talent search system. Unlike FMMR, DetConstSort requires access to

the demographic labels of the items it is trying to fairly re-rank. DetConstSort rearranges a

given list of items, such that for any particular rank k and for any attribute aj , the attribute

is present at least ⌊paj .k⌋ times in the ranked list, where paj is the proportion of items in

the list that have the attribute aj . DetConstSort also re-sorts the items within the relevance

criteria so that items with better utility scores are placed higher in the ranked list as much as
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possible, while maintaining the desired attribute ratio. It thus aims to solve a deterministic

interval constrained sorting problem.

If ground-truth demographic labels are unavailable, DetConstSort may instead utilize

labels sourced from a demographic inference model. Recent work, however, has shown that

DetConstSort is sensitive to errors in demographic labels, with one example of such errors

being inaccurate inferences [77].

4.5.4.2 Evaluation Results

I present the results of my GAP attacks against my search engine when it uses DetCon-

stSort and FMMR as the fair re-ranker, respectively, in Figure 4.9. As in 5.4, these results

are averaged across three queries, multiple values of k, etc.

For DetConstSort, the skew and attention metrics are not impacted by my attack. This

can be clearly seen by comparing the η values when pr = 0 (i.e., there are no perturbed

images) to other values of pr: for DetConstSort, η for skew and attention starts high (unfair)

when pr = 0, and does not change as pr increases. The correct interpretation of these results

is not that DetConstSort is resilient to my attack. Rather, the correct interpretation is that

DetConstSort starts off unfair due to the use of inaccurate, inferred demographic data [77],

and my attack is unable to make the unfairness worse.

Thus, I find that a prerequisite for evaluating the success of my attacks on DetConstSort

is an accurate demographic inference model. Developing such models is still an active area

of research, and is out-of-scope for my work. Should a more accurate demographic inference

model be designed in the future, however, it must be designed with adversarial robustness in

mind to prevent my attacks.

4.6 Limitations

My study has a number of limitations. First, my analysis is limited to two discrete racial

and two discrete gender categories. Although my CGAP attack could be tailored to select

any group, it is unclear how well my attack would perform in situations with > 4 discrete

protected groups, groups with continuous attributes, people with multiple or partial group

memberships, or with population distributions that varied significantly from my dataset.

Second, while my dataset is sufficiently large to demonstrate my attack, it is smaller than

the databases that real-world image search engines retrieve from. Third, my proof-of-concept
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Figure 4.8: GAP models trained on different demographic inference algorithms offer similar attack
effectiveness.
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Figure 4.9: DetConstSort has poor performance even without an attack, making my results
uninteresting.

was tuned to attack FairFace and Deepface. It is unclear how well my CGAP attack would

generalize to other models or real-world deployed systems. Fourth, as I observe in Figure 4.5,

my attack is only successful at generating unfairness in favor of already-advantaged groups.

While this is a limitation, it in no way diminishes the potential real-world harm my attack

could inflict on marginalized populations. Finally, as shown in Figure 4.7, my attack’s

effectiveness varies by query. In real world scenarios, an attacker could mitigate this to some

extent by devoting more of their resources towards perturbing images that are relevant to

high-value queries. It is unclear how much the attackers’ effort would need to vary in practice

given that I make no attempt to attack deployed search engines.
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4.7 Discussion

In this study, I investigate the vulnerability of fair ranking algorithms to adversarial

machine learning attacks. I use a case study of fairness-aware text-to-image retrieval to

demonstrate the effectiveness of my novel adversarial attack. My results show that my

attack is highly successful at subverting the fairness algorithm of the search engine across an

extensive set of attack variations, while having almost no impact on search result relevance.

My analysis raises concerns regarding the use of demographic inference in fair algorithms

and highlights the need for more robust fair machine learning interventions that are resilient to

adversarial attacks. Achieving demographic fairness requires either high-quality demographic

data or robustness against uncertainty, and in the absence of either safeguards, allowing

adversaries to influence demographic metadata is the underlying flaw that enables my attack

to succeed. My research also has limitations, including the dataset size and the number of

discrete protected groups analyzed. However, I believe that my work will raise awareness and

spur further research into vulnerabilities in fair algorithms, and I call for the development

of more robust fair machine learning interventions. I also emphasize the importance of

high-quality, consensual demographic data to improve ethical norms and defend against

adversarial machine learning attacks, and further investigation into adversarially robust and

uncertainty aware fair ranking models.

58



Chapter 5

When Fair Classification Meets Noisy

Protected Attributes

5.1 Research Problem

Fairness is a critical component of trustworthy AI, and the adoption of fair classifiers in

real-world scenarios is a formidable challenge. One of the primary challenges is the accurate

collection and use of demographic data. Just as I discussed earlier for fair ranking, many

classical fair classifiers also assume that protected attributes are available at training and

testing time, and that this data is accurate. However, demographic data may be noisy

for various reasons, including imprecision in human-generated labels, reliance on imperfect

demographic-inference algorithms, or intentionally poisoning demographic data. To deal

with these issues, researchers have proposed noise-tolerant fair classifiers that incorporate

the error rate of demographic attributes in the fair classifier optimization process itself.

In some cases, demographic data may not be available at all, which violates the assump-

tions of both classical and noise-tolerant fair classifiers. This may occur when demographic

data is unobtainable, prohibitively expensive to generate, or when laws disallow the use of

protected attributes to train classifiers. To address this issue, researchers have proposed

demographic-blind fair classifiers that use the latent representations in the feature space of

the training data to reduce gaps in classification errors between protected groups.

While demographic-blind fair classifiers are an attractive solution in contexts where

protected attributes are unavailable, practical questions about the efficacy of these algorithms

59



CHAPTER 5. WHEN FAIR CLASSIFICATION MEETS NOISY PROTECTED ATTRS.

remain. First, because these techniques are unsupervised, it is unclear what groups are

identified for fairness optimization. Under what circumstances are demographic-blind fair

classifiers able to achieve fairness for social groups that have been historically marginalized

or are legally protected? Conversely, are the groups constructed by demographic-blind fair

classifiers arbitrary and thus divorced from salient real-world sociohistorical context? Second,

assuming that demographic-blind fair classifiers do identify and act on meaningful groups of

individuals, how does their performance (in terms of predictions and fairness) compare to

classical and noise-tolerant fair classifiers?

Benchmark studies address this gap by focusing on the evaluation of a large set of models

under expansive and carefully controlled conditions [67,96]. These studies provide important

context for the ML field, e.g., by identifying models that do not work well in practice, models

that have equivalent performance characteristics under a wide range of circumstances, and

areas where new models may be needed. To the best of my knowledge, existing benchmark

studies focus solely on classical fair classifiers, which motivates me to update their results.

Motivated by the proliferation of fundamentally different fair classifiers, in this chapter I

present an empirical, head-to-head evaluation of the performance of 14 classifiers spread across

four classes: two unconstrained classifiers, seven classical fair classifiers, three noise-tolerant

fair classifiers, and two demographic-blind classifiers. My study evaluates the accuracy,

stability, and fairness guarantees of these classifiers across four datasets as the noise in

the protected attribute varies. To help explain the performance differences observed, I

calculate and compare the feature importance vectors for the various trained classifiers. This

methodological approach enables me to compare the performance of these algorithms under

controlled, naturalistic circumstances in an apples-to-apples manner.

5.2 Algorithms and Metrics

In this section, I introduce the 14 classifiers that I evaluated in this study and the metrics

I used to evaluate them.

5.2.1 Classifiers

I group the classifiers that I evaluated in this study into four classes: (1) unconstrained

classifiers that solely optimize for accuracy; (2) classical fair classifiers that require access to

protected attributes at training (and sometimes testing) time, and assume that this data are
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accurate; (3) noise-tolerant fair classifiers that also require access to protected attributes but

account for uncertainty in the data; and (4) demographic-blind fair classifiers that jointly

optimize for accuracy and fairness but without access to any protected attribute data. The

set of classifiers I have selected is not exhaustive. Instead, aim to include representative

classifiers from the various types of approaches that exist within each class. I discuss the

classifiers from each class that I selected for my study below, with further details on related

approaches in each subsection.

5.2.1.1 Unconstrained Classifiers

I chose two classifiers that do not have any fairness constraints, i.e., they only aim to

maximize predictive accuracy.

• Logistic Regression (LR) is the simplest classifier I evaluate. While LR is

demographic-aware because it takes all features (including protected attributes) as

model inputs at both train and test time, it is not designed to achieve any fairness

criteria.

• Random Forest (RF) is an ensemble method for classification built out of decision

trees. Like LR, I train RF classifiers on all input features including protected attributes.

5.2.1.2 Classical Fair Classifiers

I chose seven classifiers from the literature that take protected attributes as input and

attempt to achieve demographic fairness. These classifiers vary with respect to how they

implement fairness, i.e., by pre-processing data, in-process during model training, or by

post-processing the trained model. In particular, there exist many techniques for fairness

optimization in this class, such as: reweighting of samples via group sizes [38, 63,105] or via

mutual independence of protected and unprotected features in the latent representations

[218,219], adding fairness constraints during the learning process [4,5,107,215], or by changing

the output labels to match some fairness criterion [106,162]. The seven classifiers I choose

below are representative of these different approaches.

• Sample Reweighting (SREW) is a pre-processing technique that takes each (group,

label) combination in the training data and assigns rebalanced weights to them. The

61



CHAPTER 5. WHEN FAIR CLASSIFICATION MEETS NOISY PROTECTED ATTRS.

goal of this procedure is to remove imbalances in the training data, with the ultimate

aim of ensuring fairness before the classifier is trained [105].

• Learned Fair Representation (LFR) is a pre-processing technique that converts the

input features into a latent encoding that is designed to represent the training data well

while simultaneously hiding protected attribute information from the classifier [218].

• Adversarial Debiasing (ADDEB) is an in-process technique that trains a classifier

to maximize accuracy while simultaneously reducing an adversarial network’s ability

to determine the protected attributes from the predictions [219].

• Exponentiated Gradient Reduction (EGR) is an in-process technique that reduces

fair classification to a set of cost-sensitive classification problems, essentially treating

the main classifier itself as a black box and forcing the predictions to be the most

accurate under a given fairness constraint [4]. In this case, the constraint is solved as

a saddle point problem using the exponentiated gradient algorithm.

• Grid Search Reduction (GSR) uses the same set of cost-sensitive classification

problems approach as EGR, except in this case the constraints are solved using the

grid search algorithm [4,5].

• Calibrated Equalized Odds (CALEQ) is a post-processing technique that optimizes

the calibrated classifier score output to find the probabilities that it uses to change

the output labels, with an equalized odds objective [162].

• Reject Option Classifier (ROC) is a post-processing technique that swaps favorable

and unfavorable outcomes for privileged and unprivileged groups around the decision

boundaries with the highest uncertainty [106].

Note that the CALEQ and ROC algorithms have access to protected attributes at both train

and test time, while the other classifiers only have access to protected attributes at training

time.

5.2.1.3 Noise-tolerant Fair Classifiers

I chose three classifiers from the literature that take protected attributes as input and

attempt to achieve demographic fairness even in the presence of noise. Other than the three
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classifiers that I chose, I are aware of only one other approach: by [41], who suggests using

de-noised constraints to achieve near-optimal fairness.1

• Modified Distributionally Robust Optimization (MDRO) [209] is an extension

of the Distributionally Robust Optimization (DRO) algorithm [90] that adds a maxi-

mum total variation distance in the DRO procedure. By assuming a noise model for

the protected attributes, it aims to provide tighter bounds for DRO.

• Soft Group Assignments (SOFT), also by [209], is a theoretically robust approach

that first performs “soft” group assignments and then performs classification, with the

idea being that if an algorithm is fair in terms of those robust criteria for noisy groups,

then they must also be fair for true protected groups [104].

• Private Learning (PRIV) is an approach by [149] that uses differential privacy

techniques to learn a fair classifier while having partial access to protected attributes.

The approach requires two steps. The first step is to obtain locally private versions

of the protected attributes (like [122]). Second, following [13], PRIV tries to create a

fair classifier based on the private attributes. For this study, I select the privacy level

hyperparameter to be a medium value (zero).

5.2.1.4 Demographic-blind Fair Classifiers

I chose two classifiers from the literature that attempt to achieve fairness without taking

protected attributes as input.

• Adversarially Reweighted Learning (ARL) harnesses non-protected attributes

and labels by utilizing the computational separability of these training instances to

divide them into subgroups, and then uses an adversarial reweighting approach on the

subgroups to improve classification fairness [121].

• Distributionally Robust Optimization (DRO) is an algorithm that attempts to

minimize the worst case risk of all groups that are close to the empirical distribution [90].

In the spirit of Rawlsian distributive justice, the algorithm tries to control the risk to

minority groups while being oblivious to their identities.

1 [41]’s source code only supported Statistical Parity and False Discovery constraints, not EOD, which is
why I omitted their classifier from my analysis.
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These two classifiers operate under similar principles: they both try to reduce the gap in

errors between protected groups by reducing the classification errors between latent groups

in the training set. They do however have one difference: while DRO just increases the

weights of the training examples that have higher errors, ARL trains an auxillary adversarial

network to identify the regions in the latent input space that lead to higher errors and tries

to equalize them, a phenomenon [121] call computational identifiability.

5.2.2 Evaluation Metrics

To compare the above 14 classifiers head-to-head, I studied their predictive power and

their ability to achieve a fairness condition. I also measured the stability of these quantities

when noise in the protected attributes was and was not present (described in 5.3.2).

To assess predictive performance I computed accuracy, defined as:

Accuracy=number of correct classifications
test dataset size . (5.1)

Accuracy is continuous between zero and one with the ideal value being one, which indicates

a perfectly predictive classifier.

Many measures of fairness exist in the literature [140]. For the purposes of this study,

however, I needed to choose a metric that is supported by all the 14 classifiers so that my

comparison is apples-to-apples. The classical and noise-tolerant fair classifiers have support

for achieving any user-specified fairness constraint, while the demographic-blind fair classifiers

try to minimize the gap in utility between the protected groups. Based on this limitation,

and for the sake of brevity, I choose the Average Odds Difference between two demographic

groups as my fairness metric, and subsequently choose Equal Odds Difference (EOD) over

both groups as my regularization constraint for the classical and noise-tolerant fair classifiers.

EOD is defined as:

EOD=
(FPRunpriv−FPRpriv)+(TPRunpriv−TPRpriv)

2 (5.2)

where TPR is the true positive rate and FPR is the false positive rate. Priv and Unpriv

denote the privileged and unprivileged groups, respectively. The ideal value of EOD is zero,

which indicates that both groups have equal odds of correct and incorrect classification by

the trained classifier.

In this study, when I evaluate fairness, I do so for binary sex attributes. I adopted this
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Figure 5.1: Fraction of females in the datasets after adding synthetic noise. The dashed line
indicates the true fraction of females.

approach because the datasets I use in my evaluation all include this attribute (see 5.3) and

four classifiers in my evaluation (e.g., CALEQ, ROC, EGR, GSR) only support fairness

constraints over two groups. Whenever necessary, I consider males to be the privileged

group and females to be the unprivileged group. Note that optimizing for fairness between

two groups is the simplest scenario that fair classifiers will encounter in practice—if they

perform poorly on this task, then they are unlikely to succeed in more complex scenarios

with multiple, possibly intersectional, groups.

5.3 Methodology

In this section, I describe the approach I used to empirically evaluate the 14 classifiers

that I chose for my study.

5.3.1 Case Studies

To observe how the classifiers perform on real-world data I chose four different datasets.

The classification tasks are described below. Each dataset had binary sex as part of the

input features.

1. Public Coverage [58]. The task is to predict whether an individual (who is low

income and not eligible for Medicare) was covered under public health insurance. I

used census data from California for the year 2018.

2. Employment [58]. The task is to predict whether an individual (between the ages of

16 and 90), is employed. For this task too, I looked at census data from California for

the year 2018.
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3. Law School Admissions [210]. The task is to predict whether a student was

admitted to law school.

4. Diabetes [195]. The task is to predict whether a diabetes patient was readmitted to

the hospital for treatment after 30 days.

For each of these case studies, I split the dataset into train and test sets in an 80:20

ratio, trained every classifier on the same training set, and then used the trained classifiers to

generate predictions on the same testing set. I verified via two-tailed Kolmogorov–Smirnov

tests [115, 191] and Mann–Whitney U tests [137] that the test set distribution for every

feature was the same as the training set distribution. Finally, I calculated the metrics in 5.2.2

on these predictions and compared the results from each classifier head-to-head. I repeated

this procedure ten times to assess the stability of accuracy and EOD for each classifier.

5.3.2 Synthetic Noise

While studying the performance of these classifiers on a variety of real-world datasets is

important, in order to get a more thorough understanding of the theoretical fairness and

predictivity limits of the classifiers I subjected them to robust synthetic stress tests. As

discussed in 2.2.1, in the real world, practitioners may not have access to the protected

attribute information of people in their dataset. As a result, practitioners may use inference

tools to find proxies for protected attributes, which can lead to unexpected, unfair outcomes

[77]. To characterize what might happen in such a scenario, I perform the following synthetic

experiments:

1. For each dataset, with a given probability (ranging from 0.1 to 0.9), I randomly flip

the protected attribute labels (binary sex in this case) in the dataset. I refer to this

probability value as noise.

2. With the synthetically generated dataset from Step 1, I then proceed to split the

dataset 80:20, train all 14 algorithms on the same training set, and then calculate

predictions on the same test set. The noisy (flipped) labels are passed as inputs to the

classifiers at this step.

3. Next, with the predicted outcomes from Step 2, I calculate accuracy and EOD. Note

calculate EOD with the true protected attributes, i.e., I measure the output bias in

terms of the original sex labels from the given dataset.
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Figure 5.2: KernelShap feature explanations calculated for the Logistic Regression (LR) classifier
when trained on the Public Coverage dataset with no added noise. I used the same approach to
calculate feature importances for every classifier-dataset pair at different noise levels.

4. I repeat Steps 1–3 ten times for each value of noise, to ensure statistical fairness and

assess the stability of my metrics per classifier.

Figure 5.1 shows the fraction of females in the noised datasets at each level of noise.

The fraction of females goes up or down with noise depending on what the true fraction of

females in the different datasets were to begin with.

5.3.3 Calculating Feature Importance

To help explain the variations in performance that I observed in my results, I calculated

feature importance for each of my trained models. Although there are several black-box

model explanation tools in the research literature—such as LIME [169], SHAP [136], and

Integrated Gradients [198]—I required an explanation method that was model agnostic. The

method that I settled on was KernelShap.2 According to the documentation, KernelShap

2https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
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uses a special weighted linear regression model to calculate local coefficients, to estimate

the Shapley value (a game theoretic concept that estimates the individual contribution of

each player towards the final outcome). As opposed to retraining the model with every

combination of features as in vanilla SHAP, KernelShap uses the full model and integrates

out different features one by one. It also supports any type of model, not just linear models,

and was thus a good candidate for my study.

Figure 5.2 shows an example distribution of feature importances calculated for the LR

algorithm when trained on the Public Coverage dataset at noise level zero (i.e., no noise).

In a similar fashion, I used KernelShap to calculate feature importance values for trained

classifier outputs at noise levels 0, 0.2, 0.4, 0.6 and 0.8 for all 14 models.

Research by [117] has shown that different explanation methods often do not agree with

each other. I do not claim that the feature importances I calculated using KernelShap are

guaranteed to agree with those produced by other tools. Nonetheless, I are specifically

interested in the relative importance of the sex feature towards the final outcome as compared

to the other input features. Shapley value-based explanations give us a reasonable sense of

relative feature importance, as has been empirically shown in previous work [81].

5.4 Results

In this section, I present the results of my experiments. I begin by examining the baseline

performance of the 14 classifiers when there is no noise, followed by their performance in

the presence of synthetic noise. Finally, I delve into feature importance explanations to help

explain the relative performance characteristics of the classifiers.

5.4.1 Baseline Characteristics

Figure 5.3(a–d) shows the accuracy and fairness outcomes for all 14 classifiers when there

was no noise in the datasets. I executed each classifier ten times without fixing a random

seed and present the resulting distributions of metrics using violin plots. I observe that

most of the classifiers achieved comparable accuracy to each other on each dataset, and

that most classifiers exhibited stable accuracy over the ten executions of the experiments.

Learned Fair Representation (LFR), Soft Group Assignment (SOFT), and Distributed Robust

Optimization (DRO) were the exceptions: the former two exhibited unstable accuracy on

all four datasets, the latter on two datasets. conduct As shown in Figure 5.3(e–h), EOD

68



CHAPTER 5. WHEN FAIR CLASSIFICATION MEETS NOISY PROTECTED ATTRS.

LR R
F

SR
EW LF

R

A
D

D
EB

EG
R

G
SR

C
A

LE
Q

R
O

C

M
D

R
O

SO
FT

PR
IV

A
R

L

D
R

O

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y

Public Coverage

LR R
F

SR
EW LF
R

A
D
D
EB

EG
R

G
SR

C
A
LE

Q

R
O
C

M
D
R
O

SO
FT

PR
IV

A
R
L

D
R
O

(b)

Employment

LR R
F

SR
EW LF

R

A
D

D
EB

EG
R

G
SR

C
A

LE
Q

R
O

C

M
D

R
O

SO
FT

PR
IV

A
R

L

D
R

O

(c)

Law School Admission

LR R
F

SR
EW LF
R

A
D
D
EB

EG
R

G
SR

C
A
LE

Q

R
O
C

M
D
R
O

SO
FT

PR
IV

A
R
L

D
R
O

(d)

Diabetes

LR R
F

SR
EW LF

R

A
D

D
EB

EG
R

G
SR

C
A

LE
Q

R
O

C

M
D

R
O

SO
FT

PR
IV

A
R

L

D
R

O

(e)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Eq
ua

l O
dd

s 
D

if
fe

re
nc

e

LR R
F

SR
EW LF
R

A
D
D
EB

EG
R

G
SR

C
A
LE

Q

R
O
C

M
D
R
O

SO
FT

PR
IV

A
R
L

D
R
O

(f)

LR R
F

SR
EW LF
R

A
D
D
EB

EG
R

G
SR

C
A
LE

Q

R
O
C

M
D
R
O

SO
FT

PR
IV

A
R
L

D
R
O

(g)

LR R
F

SR
EW LF
R

A
D
D
EB

EG
R

G
SR

C
A
LE

Q

R
O
C

M
D
R
O

SO
FT

PR
IV

A
R
L

D
R
O

(h)

Figure 5.3: Accuracy and EOD for my 14 classifiers, calculated over four datasets with ten runs
each. No noise was added to the protected attribute in these tests. Violins are color coded by class:
blue for unconstrained classifiers, purple for classical fair classifiers, green for noise-tolerant fair
classifiers, and red for demographic-blind fair classifiers. LR, SREW, and GSR are deterministic
algorithms and therefore appear as fixed points.

was considerably more variable over runs than accuracy. The unconstrained classifiers (LR

and RF) were relatively stable and, in some cases, achieved roughly equalized odds (e.g., on

the Law School and Diabetes datasets). The classical fair classifier group contained the two

least fair classifiers in these experiments (CALEQ and ROC), while the other pre-processing

and in-process algorithms performed relatively better. Adversarial Debiasing (ADDEB)

was slightly unstable but the distribution centered around zero. Among the noise-tolerant

fair classifiers, Soft Group Assignment (SOFT) was unstable on three out of four dataset,

while the other two classifiers (MDRO and PRIV) were relatively more stable and more fair.

The two demographic-blind fair classifiers (ARL and DRO) were unstable on the Public

Coverage dataset (Figure 5.3e) and did not achieve equalized odds on the Employment

dataset (Figure 5.3f). However, ARL and DRO were stable and fair on the remaining two

datasets.

In summary, I observe that the accuracy and fairness performance of these classifiers

was dependent on the dataset that they are trained and tested on, i.e., there was no single
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Figure 5.4: Accuracy and EOD for my 14 classifiers, calculated over four datasets as I increase
noise in the protected attribute (sex). Each point is the average of ten runs for a given classifier,
dataset, and noise level. Classifiers are color coded according to the legend. I highlight classifiers
whose performance significantly diverges from the consensus with annotated labels.

best classifier. Additionally, I can see that several classifiers are consistently unstable, which

explains some of the results that I will present in the next section.

5.4.2 Characteristics Under Noise

Next, I present the results of experiments where I added noise to the protected attribute

of the datasets. I added noise in increments of 0.1 starting from 0.1 and ranging up to 0.9. I

added a given amount of noise to each dataset ten times and repeated the experiment, thus I

plot the average values of accuracy and EOD for each classifier at each noise level.

Figure 5.4(a–d) shows the accuracy of the 14 classifiers’ outputs as I varied noise. I

observe that the MDRO, SOFT, and LFR classifiers had poor accuracy across all datasets

and noise levels, while the DRO classifier had poor accuracy in two out of the four datasets.

These observations mirror those from Figure 5.3, i.e., these classifiers exhibited poor average

accuracy in the noisy experiments because they were unstable in general. The other classifiers
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tended to be both accurate and stable, irrespective of noise.

As shown in Figure 5.4(e–h), the EOD results were much more complex than the accuracy

results. ROC generated unfair outputs over all four datasets, at every noise level. Its

companion post processing algorithm, CALEQ, exhibited rising EOD with noise for the

Public Coverage dataset (Figure 5.4e) and falling EOD for the Employment and Diabetes

datasets (Figure 5.4f, h).3 The unconstrained classifiers (LR and RF) moved in the same

direction for every dataset, either rising (Figure 5.4e, f) or falling (Figure 5.4h) with noise.

The SOFT classifier also exhibited some variable behavior: on the Employment dataset EOD

rose with noise (Figure 5.4f), and on the Public Coverage (Figure 5.4e) and Employment

datasets it failed to achieve equal odds at all noise levels. The remaining classifiers tended to

achieve equal odds irrespective of the noise level.

Figure 5.4 only depicts average values for accuracy and EOD, which is potentially

problematic because it may hide instability in the classifiers’ performance. To address this

I present Figure 5.7, which shows the distribution of accuracy and EOD results for each

classifier on each dataset at the 0.1, 0.5, and 0.9 noise levels. I observe that, overall, no

classifier became consistently less stable as noise increased. Rather, the stability patterns for

each classifier mirrored the patterns that I already observed in Figure 5.3.

In summary, the classifiers that had problematic performance in the baseline experi-

ments (see Figure 5.3) continued to have issues in the presence of noise. Additionally, the

unconstrained classifiers exhibited inconsistent fairness as noise varied. Surprisingly, the

noise-tolerant classifiers did not uniformly outperform the other fair classifiers.

5.4.3 Feature Importance

Finally, I delve into model explanations as a means to further explore the root causes

of the classifier performance characteristics that I observed in the previous sections. First,

I calculated feature explanations using KernelShap for every classifier at five noise levels—

0, 0.2, 0.4, 0.6 and 0.8—using the method I described in 5.3.3. Next, I averaged the

explanation distributions for each classifier to form a feature importance vector per classifier.

Finally, I repeated this process for each dataset. For each dataset, I calculated Wasserstein

distances [206] between the feature explanation distributions for each algorithm pair and

present the results in Figure 5.5. Additionally, I plot the rank of the sex feature in terms of

3Note that a higher value of EOD (Equation 5.2.2) signifies that females received more positive predictions
than males.
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Figure 5.5: Wasserstein distances between the average KernelShap feature importance distributions
over different noise levels for the four datasets. Each square compares the average feature importances
of two classifiers. Redder squares denote pairs of classifiers with more divergent feature importance
distributions.

mean absolute feature importance for each classifier and present the results in Figure 5.6 (I

also show the range of ranks if they vary over noise).

Figure 5.5 reveals that, with few exceptions (EGR in Public Coverage, EGR and GSR

in Employment, EGR and ROC in Law school, and CALEQ, PRIV and ARL in Diabetes),

most classifiers had similar feature explanation distributions. I do not observe any clear

patterns among the exceptional classifiers, i.e., no classifier consistently diverged from the

others across all datasets. Further, I do not observe clear correlations between accuracy,

EOD, and feature distribution similarity, suggesting that different classifiers took different

paths to reach the same levels of performance.

Figure 5.6 is more informative than Figure 5.5. four of the classifiers that exhibited

consistently poor performance—LFR, MDRO, and SOFT (Figure 5.3a–d), and ROC (Fig-

ure 5.3e–h)—learned to weight the sex feature higher than other features, which may point

to the root cause of their accuracy and fairness issues. Similarly, the unconstrained classi-

fiers (LR and RF) exhibited changing EOD with noise levels in three out of four datasets

(Figure 5.4e, f, h), but not for Law School Admissions (Figure 5.4g), and I observe that

they learned a relatively low weight for sex among the available features for the Law School

dataset. CALEQ also learned a relatively low weight for sex on the Law School datase and

was subsequently unaffected by noise (Figure 5.4g), but showed variable trends in EOD for

the other three dataset (Figure 5.4e, f, h) on which it learned a relatively higher weight for

sex.

Sex was the lowest ranked feature for the two demographic-blind fair classifiers (DRO
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Figure 5.6: Rank of Sex in the average absolute KernelShap feature importances for the different
algorithms in my case studies.

and ARL), which makes sense because they were not given these features as input. EGR

and GSR also did not have access to sex while classifying the test dataset, so they also had

sex as the lowest ranked feature.

5.4.4 Fairness-Accuracy Tradeoff

Three algorithms in my list - EGR, GSR, and PRIV, provide a mechanism to control

the fairness-accuracy tradeoff via a hyperparameter – namely fairness violation eps in the

case of EGR and GSR [4], and the privacy level ϵ in the case of PRIV [149]. Based on the

experiments the authors of these algorithms did in their papers, I used different eps values

between 0.01 and 0.20 and ϵ values between -2 and 2 and reran my experiments. I found

that tweaking the tradeoff hyperparameter did not contribute meaningfully to the stability

and noise resistance capabilities of these algorithms. Consequently I omit these results from

the chapter.
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5.5 Discussion

In this study, I benchmarked 14 ML classifiers divided into four classes and evaluated

their accuracy, fairness, and stability across four datasets with varying levels of random noise

in the protected attribute. My results suggest that classical fair classifiers like SREW and

EGR may perform well in the face of noise, and that demographic-blind fair classifiers like

ARL can achieve comparable fairness performance to demographic-aware fair classifiers on

some datasets.

However, I urge caution with the adoption of demographic-blind fair classifiers for practical

reasons. Monitoring the health of a classifier like ARL in the field requires demographic

data, and determining whether a classifier will achieve acceptable performance in a given

context requires thorough evaluation on a dataset that includes demographic data. My study

highlights the need for further development in the areas of noise-tolerant and demographic-

blind fair classifiers, and I hope to provide a foundation for evaluating these novel classifiers

in the future by releasing my source code and data.

As models are deployed in the real world, they may face issues such as data or concept

drift, leading to a fair model becoming unfair over time. This can result in biased decisions

and unintended consequences, compromising the model’s original intent of promoting fairness

and equity. Thus, during monitoring the health of classifiers, it is also crucial to develop

appropriate methods that can detect and correct drift to ensure that the model continues

to achieve its intended objectives. In the next chapter, I discuss a system to monitor and

maintain the model’s performance over time and prevent it from becoming unfair in the face

of drift.

5.6 Limitations

My study has several limitations. First, I only evaluate classifiers using binary protected

attributes. It is unclear how their performance and consistency would change under more

complex conditions. That said, I are confident that the classifiers that performed poorly will

continue to do so in the presence of more complex fairness objectives. Second, my case studies

and synthetic experiments, while thorough, are by no means completely representative of

all real world datasets and contexts. We caution that my results should not be generalized

indefinitely. Third, I did not evaluate all of the classical fair classifiers from the literature
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(see [67] and [140] for more). That said, my primary focus was on adding to the literature by

benchmarking noise-tolerant and demographic-blind fair classifiers. Finally, in this study I

only evaluated one fairness metric—EOD—because it was the common denominator among

all of the classifiers I selected. Future work could explore fairness performance more deeply

by choosing other fairness metrics along with subsets of amenable classifiers.
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Figure 5.7: Plots showing the stability of my 14 classifiers over three different levels of noise in
protected attributes (0.1, 0.5 and 0.9). For each dataset I present the stability of each classifiers’
accuracy and EOD.
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Chapter 6

FairCanary: Rapid Continuous

Explainable Fairness

6.1 Research Problem

As ML models are increasingly deployed in high-stakes applications, the issue of concept

drift has become a major concern. Concept drift refers to the phenomenon where the

underlying data used to train a model changes over time, leading to a mismatch between the

training data and the data used in production. This can cause the model to make errors and

impact its ability to make accurate predictions. While there is a significant body of research

on detecting and mitigating concept drift in ML models, little attention has been paid to the

impact of drift on the fairness of these models.

To address this issue, I present FairCanary, a continuous model monitoring system that

offers two significant capabilities to help ensure model fairness over time. First, FairCanary

incorporates a novel model bias quantification metric called Quantile Demographic Disparity

(QDD) that uses quantile binning to measure differences in the overall prediction distributions

over subgroups. Second, FairCanary reuses explanations computed for each individual

prediction to quickly compute explanations for its bias metrics. These optimizations make

FairCanary significantly faster and more suitable for continuous monitoring than previous

work on generating feature-level bias explanations.

FairCanary is closely related to the work by [145], with a couple of key differences.

While [145] calculated fairness explanations from scratch using Shapley-based methods, for
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Figure 6.1: A diagram illustrating how FairCanary monitors the inputs and outputs of a trained
model over time, identifies bias, alerts the developer, and assists in mitigation. See 6.2.1 for further
details.

FairCanary I assume that a system that continuously generates prediction explanations, like

the systems in [50], are already available. FairCanary sits on top of such a system and reuses

these existing prediction explanations to generate fairness explanations in linear time (see

6.2.3).

In the following sections, I introduce FairCanary, present an overview of its operation

and capabilities, formally define the QDD metric, and discuss how to obtain explanations for

it by reusing existing prediction attributions. Next, I present a synthetic case study that

highlights FairCanary’s capabilities, demonstrating how it can detect and explain bias caused

by concept drift in real-time. By providing an effective tool for monitoring and mitigating

bias and unfairness in ML models, FairCanary can help bring more equity and justice to the

individual stakeholders impacted by deployed models.

6.2 FairCanary System Description

I now describe FairCanary, my system for performing continuous model monitoring. First,

I present the context in which FairCanary is designed to operate and describe its operations

at a highlevel. Next, I discuss how FairCanary measures bias and introduce my novel

Quantile Demographic Disparity (QDD) metric. Finally, I describe how FairCanary provides

explanations that attribute observed biases to specific features, and the bias mitigation

options provided by FairCanary.
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6.2.1 Overview

FairCanary is a system for performing continuous model monitoring. It is designed to be

deployed into production environments alongside a trained ML model to help the developers

monitor the model’s performance over time in terms of traditional and fairness performance

metrics. In this paper, my focus will be on the latter, fairness metrics.

The developer of the model must configure FairCanary, a priori, by defining the (inter-

sectional) groups for which unfairness will be monitored, identifying the feature(s) in the

dataset that encode group membership, establishing base rate statistics for these groups (i.e.,

as ascertained from the model’s underlying training data), and setting thresholds to trigger

bias alerts.

Figure 6.1 illustrates FairCanary’s mode of operation and some of its key capabilities.

(a) As new data arrives it is fed into the trained model, which (b) produces predictions that

are stored by FairCanary. Over time, FairCanary maintains a record of the predictions for

each group at an operator-specified time granularity.

(c) Periodically, FairCanary computes the fairness metric (QDD, see 6.2.2) for the

model and alerts the developers if any group performs below the preconfigured threshold.

FairCanary provides explanations along with alerts that inform the developer which feature(s)

are attributable to the issue (see 6.2.3). (d) Subsequently, the developer may mitigate the

emergent unfairness using tools provided by FairCanary (see 6.2.4), which (e) should return

the model to a state where predictions are fair across groups.

6.2.2 Quantile Demographic Disparity

In this section, I describe a new metric to measure bias in the predictions of a ML model,

at both the group and individual level. The prediction tasks covered by my metric include

any single dimensional output, such as regression output, or the output of any particular

class in a multi-class classification model.

My metric, Quantile Demographc Disparity (QDD), falls within the distributional differ-

ence family of fairness metrics (see Table 2.1). I argue that there are two reasons for assessing

the fairness of an ML model by comparing its prediction distributions over the groups of

interest, versus focusing on post-threshold outcomes. The first reason is to ensure that I

measure bias across the whole spectrum of classified individuals, as opposed to focusing solely

on the individuals that are above the threshold of selection, or on group-level approximations.
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Second, as groups of interest get smaller, they reveal more information about intra-group

disparities that would have otherwise been lost due to aggregation [79], all the way down to

groups of one, i.e., individuals. This helps remove aggregation bias from the bias measurement

itself.

6.2.2.1 Desired Properties of a Bias Metric

I now discuss desirable properties of a distributional fairness metric that fit my stated

objectives:

1. The metric should be in the units of the model’s prediction scores. The utility of this

is especially evident when dealing with continuous output models. This is desirable

because it provides insight into the extent of the problem, before human intervention

is applied, such as deciding and applying a threshold.

2. The metric should take the value zero only if the prediction distributions being

compared are exactly the same. The benefit of this is that, when taken along with the

first property, it gives the ML practitioner a mental scale to understand the extent of

the bias.

3. The metric should be continuous with respect to changes in the geometry of the

distribution [145]. This ensures that any distributional change is captured.

4. The metric should be non-invariant with respect to monotone transformations of the

distributions [145]. For example, given two samples of points S1 and S2, if I multiply

the value of each point in the samples by a constant k, the distance between the

modified samples should now depend on k. Jensen-Shannon Divergence (JSD) [127],

for example, does not satisfy this property.

5. The metric should be bias-transforming as described in [208], i.e., the metric should

not be satisfied by a model that preserves the biases present in the data.

QDD satisfies all of these properties when the number of bins is equal to the number of

samples.The choice of number of bins can be adjusted to satisfy these properties.
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6.2.2.2 Formalization

I now describe my QDD metric, which is a function of the quantile bin that a prediction

event lies in. QDD is a novel formulation of the Wasserstein-1 distance metric [206], and

thus it is designed to work for continuous outputs and can be customized to provide sliced

views down to the individual-level.

For two groups G1 and G2, let the two distributional samples of model scores be S1 and

S2. I divide the samples into B bins of equal size N1 and N2, respectively. This is equivalent

to segmenting by quantiles. For example, if there are 10 bins, I are essentially bucketing

individuals between the 0th–10th percentile, 10th–20th percentile, and so on.

I define QDD for bin b as

QDDb = EG1,b
[S1]− EG2,b

[S2]. (6.1)

This can be approximated as

QDDb =
1

N1

N1∑
n=1

S1,n − 1

N2

N2∑
n=1

S2,n. (6.2)

The QDD, when conditioned on certain attributes C, becomes the Conditional Quantile

Demographic Disparity.

To demonstrate the flexibility of QDD, I demonstrate how it can be used to measure

three different conceptualizations of bias.

1. Intra-Group Bias is defined as the maximum QDD across the b bins of a given group

of individuals. This quantity is useful to combat aggregation bias within groups.

2. Disparity with Base Rate is defined as the difference between the QDD calculated over

the production data and the QDD of the training data. This quantity is most relevant

when the training data is representative of the population the model is expected to

encounter during deployment.

3. Individual Fairness via Alignment.

QDD is defined between two groups over a given number of bins, which determines the

resolution of the metric. If the number of bins is equal to the number of instances in the
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sample, QDD becomes a comparison between individuals at the same rank or percentile.

This is equivalent to the concept of alignment proposed by [188].

Computing QDD over individual instances gives me a clean way to obtain individual

fairness insights, with the counterfactual example being the same ranked counterpart in

the opposite group. This method does not require me to compute complex counterfactuals,

which could have their own biases and errors [111]. The principle I use to justify this insight

is as follows: if there is no bias between two groups, and I have a large enough sample of

both, then the distance between individuals of the same rank in the prediction space should

be zero.

6.2.3 Explanation

Explainability of ML systems that are deployed in production is a very important part of

the practice of responsible AI [25,139]. This especially applies to models that are contributing

to decisions that can impact peoples’ lives. Such decisions cannot be inscrutable, and thus

the internal workings employed by the ML models must be human-verified to be logical and

normatively justifiable.

FairCanary incorporates two state-of-the-art methods for explaining the output of pre-

dictions in terms of specific features: Shapley value-based methods [135] and (if the model

being monitored is differentiable) Integrated Gradients (IG) [198]. I adopted these methods

because they satisfy the desirable axiom of efficiency [135], which helps provide a precise

accounting of bias.1

Just like explanations for individual predictions, I argue that it is vital to be able to

explain measures of fairness or bias, so that the features that are responsible for the bias can

be identified. FairCanary incorporates a novel method for explaining the feature importance

contributing to QDD that I call Local Quantile Demographic Disparity attribution.

The Local QDD attribution for feature f , for prediction sample S1 over S2 in bin b,

QDDAb,A,f is a measure of the change in QDD in bin b that can be attributed to (a.k.a.

explained by) feature f using attribution method A that satisfies the efficiency axiom. r

1Although there are other explanation methods that satisfy efficiency [28,189] I do not explore them in
this work.
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denotes the reference and t denotes the target distribution. I define

QDDAb,A,f =
1

Nt

Nt∑
n=1

attrn,A,S1,f − 1

Nr

Nr∑
n=1

attrn,A,S2,f (6.3)

where attrn,A,Si,f refers to the attribution of the nth data point to feature f for a prediction

from bin b of distribution Si using attribution method A. Given that the attribution method

A satisfies the efficiency axiom, QDDb =
F∑

f=1

QDDAb,A,f .

Proof: Since the attribution method A satisfies efficiency, for each instance in the sample

S1 and S2,
F∑

f=1

attributionsf = prediction − baseline prediction.

For the same baseline,

1

Nt

Nt∑
n=1

F∑
f=1

attrn,A,S1,f − 1

Nr

Nr∑
n=1

F∑
f=1

attrn,A,S2,f =
1

N1

N2∑
n=1

S1,n − 1

N2

N2∑
n=1

S2,n

∴ QDDb =

F∑
f=1

QDDAb,A,f .

Explaining bias in this manner enables a single attribution to be used for multiple explanations

across groups. In contrast, Shapley values over a particular metric must be re-calculated for

every grouping. My explanation technique therefore is much more computationally efficient

than previous techniques [145] since it requires the calculation of attributions only once. To

elaborate, Shapley values without approximation are exponential in the number of model

features. While there exist approximation techniques, the complexity is worse than linear

time. Hence, Wasserstein Shapley computation (n points times d features) is worse than

calculating Shapley values for n points separately for d features. Additionally, I can re-use the

Shapley values computed for a data point when calculating QDD between any combination of

protected features, whereas the whole computation needs to be repeated for each combination

in the case of Wasserstein Shapley.

6.2.4 Mitigation

Mitigation is a key outcome of monitoring bias, enabling corrective action to be taken.

FairCanary provides an option for developers to automatically mitigate bias revealed by my

QDD metric using a quantile norming approach. In essence, this approach replaces the score
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Feature Values Distribution

Location {‘Springfield’, ‘Centerville’} 70:30
Education {‘GRAD’, ‘POST_GRAD’} 80:20
Engineer Type {‘Software’, ‘Hardware’} 85:15
Experience (Years) (0, 50) Normal Distribution
Relevant Experience (Years) (0, 50) Normal Distribution
Gender {‘MAN’, ‘WOMAN’} 50:50

Table 6.1: Features, values, and their distributions used in my synthetic case study. Note that the
gender feature is only used for measuring and mitigating bias, it is not used for model training or
prediction.

of the disadvantaged group with the score of the corresponding rank in the advantaged group,

similar to the mitigations proposed in [101,154]. The justification for quantile norming is

that if (1) bias is known to exist, (2) bias is the only rational explanation for disparity, and

(3) bias is assumed to be equal within the disadvantaged group, then normalizing across

ranks is normatively justifiable.

In essence, quantile norming is a post-processing mitigation. The advantages of post-

processing mitigations as opposed to pre-training debiasing are discussed by [74]. Additionally,

quantile norming is a relatively computationally inexpensive approach to bias elimination.

I note that all bias mitigation approaches, including quantile norming, should only be

adopted in practice after conducting a thorough examining of their consequences on the

outputs of a model. [49] demonstrate several cases where mitigation may cause additional

harm to individuals or to particular groups. Developers that adopt FairCanary are under

no obligation to use quantile norming for mitigation, and are free to adopt other, perhaps

more thorough and computationally expensive, approaches (e.g., model retraining [179], data

preprocessing [105], etc.) that better suit their needs.

6.3 Case Study

In this section, I present an example of FairCanary in action via a case study on a synthetic

dataset. This allows me to inject controlled drifts into the data stream to demonstrate how

FairCanary, via QDD, can detect and explain the resulting bias. Additionally, I present

comparisons to conventional fairness metrics.
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6.3.1 Scenario

In this case study, I posit a scenario where a developer has trained a model to predict the

starting salary of job seekers based on relevant features of their resume, such as education

level and years of experience (see Table 6.1). Note that the output of this model is continuous.

Additionally, the developer designed the model to be fair with respect to the binary gender

of job seekers, i.e., the distribution of salaries predicted for men and women should be nearly

identical. I assume that the model was audited and found to be fair relative to the data that

was available at training time.

I assume that the model has learned the following relationship to predict an individual’s

salary from the features in Table 6.1:

Salary = 50, 000 + (20, 000× location) + (20, 000

×education) + (5, 000× relevant_experience)

+(100× experience) + (10, 000× engineer_type)

In my scenario, the developer deploys this model into production along with FairCanary

to continuously monitor its output. I generate 20,000 synthetic job seekers’ data per day for

three days that are fed into the model, using feature values drawn from the distributions

given in Table 6.1 (with the added constraint that experience ≥ relevant experience). On

Day One and Day Three I generate all of the candidate data correctly, but crucially, on

Day Two, I simulate a data engineering bug that erroneously labels all women as ‘GRAD’

instead of ‘POST_GRAD’ regardless of their true educational attainment. This reduces the

estimated salary for all women post-graduates by $20,000 on Day Two.

I argue that the scenario I have outlined here is realistic. ML-based resume screening

and analysis tools are widely available, and given that they gate access to employment

opportunities, it is crucial that these systems be fair [30, 164]. The bug I intentionally

simulate on Day Two could easily occur in practice, e.g., due to the temporary malfunctioning

of a resume parser that prepares data for the salary prediction model.

6.3.2 Analysis

Figure 6.2 shows how FairCanary would detect and explain the fairness problem that

occurs on Day Two. The model outputs on Day One show that the prediction distributions
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Day One Day Two

Threshold SPD DI SPD DI

$50000 0.00009 1.00009 -0.00556 0.99439
$100000 0.00911 1.01749 -0.08290 0.84569
$200000 0.00088 1.02876 -0.01049 0.65544

Table 6.2: The performance of two conventional fairness metrics, Statistical Parity Difference (SPD)
and Disparate Impact (DI), against different salary thresholds for the case study. The predictions on
Day One were fair, while they were unfair to women on Day Two. Only one metric catches the bias,
and only at one threshold (highlighted in red).

for men and women are mostly aligned (Figure 6.2a), thereby being fair. On the second day

(Figure 6.2b), due to the data integrity error discussed above, the prediction distributions

differ. When I examine the running plot for QDD2 (Figure 6.2d), I notice a sharp dip on

Day Two—QDD goes from an average value of $156 on Day One to -$8677 on Day Two—

indicating a bias against women.3 Note that the absolute value of QDD goes up, indicating

an increase in bias, and would trigger the alarm system like in Figure 6.1. Similarly, the

feature explanations (generated here using Integrated Gradients) go from being distributed

among the different features on Day One (Figure 6.2e) to assigning the majority of blame to

the education feature on Day Two (Figure 6.2f).

FairCanary would alert the model developer of the problem on Day Two, and its expla-

nations could help the developer perform root-cause analysis of the bias issue. Based on this

information, the developer could then identify and correct the underlying data engineering

bug. Once corrected, I observe that the model’s predictions are again aligned for men and

women on Day Three (Figure 6.2c), and the QDD values have returned to their expected

range (Figure 6.2d).

To further illustrate the utility of QDD I compare it with two conventional fairness

metrics—Statistical Parity Difference (SPD)4, and Disparate Impact (DI)5—to see if a

monitoring system using these metrics would have caught the bias against women on the

2For simplicity, I set the number of quantile bins as 1 for the case study. Thus, the explanations are for
the entire distribution and not any particular quantile bin.

3Recall in 6.2.2.1 I say that one useful feature of QDD is that the metric has the same units as the
predicted output. Having the QDD value in dollars clearly helps users to understand the extent of bias and
thereby aids usability.

4Statistical or Demographic Parity Difference is the difference in the positive outcome rate between the
privileged and unprivileged group. SPD = Pr(ŷ = 1|p = 1) - Pr(ŷ = 1|p = 0).

5Disparate Impact is the ratio of the passing rate of the the privileged and unprivileged group. DI =
Pr(ŷ=1|p=1)
Pr(ŷ=1|p=0)

.
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second day.

Table 6.2 shows the values of the two conventional metrics for different salary thresholds

(i.e., for the positive outcome) on Day One and Day Two. I configure the alert threshold for

both metrics6 in accordance with the US UGESP 4/5ths rule [61] that is commonly used in

disparate impact analysis [211]. Alarmingly, I observe that, as configured here, SPD would

not catch the bias on the second day at all, and DI would only catch it at one threshold level.
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Figure 6.2: Plots for my case study showing how FairCanary would detect and explain the bias
against women on Day Two on a continuously running salary prediction model. The explanations
for Day Two clearly indicate Education as the feature responsible for the bias, which enables the
practitioner to correct the data integrity issue and fix the biased predictions.

6For Statistical Parity Difference, since there is no conventionally accepted value, I set the threshold to
20% to be consistent with Disparate Impact.

87



CHAPTER 6. FAIRCANARY: RAPID CONTINUOUS EXPLAINABLE FAIRNESS

6.3.3 Limitations

While threshold independence is one of the strengths of QDD, it is also a potential

weakness: without ground truth labels, calculated disparities are, at the end of the day,

best-case approximations of the discrimination that actually takes place in society. I therefore

do not advocate for the elimination of conventional fairness metrics that require ground truth

labels and thresholds, but instead propose using them in conjunction with QDD to obtain a

fuller picture of real life harms in a context dependent manner [65].

I used Integrated Gradients as the explanation method for my case study. However, the

choice of explanation method is potentially important, as recent research [95,118] shows that

different explanation methods often do not produce the same results, and ensembling them

is superior than using any one of them in isolation.

Finally, FairCanary/QDD is not completely automated: there are still manual parameters

that need to be set, like number of bins and alert sensitivity. Providing FairCanary users

with guidance on how to tune the system for their use case and context will be crucial for real

use cases. Additionally, all fairness monitoring systems should consider providing actionable

recourse tips [109] through explanations to end-users via a carefully designed, accessible

interface.

6.4 Discussion

In this chapter I have presented FairCanary, a continuous model monitoring system that

offers a novel model bias quantification metric called Quantile Demographic Disparity (QDD)

to help ensure model fairness over time. I have shown that QDD improves on conventional

fairness metrics by not requiring prediction labels or threshold values and can be used in

conjunction with other metrics to obtain a fuller picture of real-life harms. Additionally,

FairCanary provides explanations for QDD by reusing the explanations for individual pre-

dictions, making it significantly faster and more suitable for continuous monitoring than

previous work.

I have demonstrated the functionality of FairCanary and the usefulness of my QDD

metric through examples and a synthetic case study. However, my work has limitations, such

as the choice of explanation method and the need for manual parameter setting. I believe

that providing guidance for users on how to tune the system for their specific use case and
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context, as well as providing actionable recourse tips through explanations to end-users, will

be crucial for real use cases.

Overall, I argue that ML practitioners have a professional and moral obligation to ensure

that the systems they deploy do not misbehave, and monitoring systems like FairCanary

should become a standard component of most, if not all, deployed ML-based systems. I

hope that FairCanary (or other monitoring systems that incorporate its capabilities) will

equip companies and institutions with improved tools to monitor, understand, and mitigate

problems in their deployed ML systems, in real time. In turn, I hope that these capabilities

will bring more equity and justice to the individual stakeholders impacted by deployed

models.
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Conclusion

Throughout this thesis, I have explored the challenges that practitioners face when

implementing fair machine learning algorithms in real-world settings. While there have

been many academic papers on fair machine learning, there is a significant gap between

these theoretical concepts and their practical implementation. My research has shown that

theoretical fairness guarantees often do not hold up in practice and can even exacerbate

unfairness for minority groups. Furthermore, I have found that a lack of thoughtful design

considerations can make systems vulnerable to issues such as adversarial attacks and concept

drift, which can erode fairness over time.

I dive into detailed conclusions for each paper below.

7.1 When Fair Ranking Meets Uncertain Inference

In this study I investigate the interactions between five demographic inference algorithms

and the DetConstSort fair ranking algorithm. To ensure realism, I derive the error rates

for the demographic inference algorithms from real-world datasets, and present results from

controlled simulations and real-world case studies. The takeaway from my experiments is

that using inferred demographic data as input to fair ranking algorithms can invalidate their

fairness guarantees in ways that are (1) difficult to predict and (2) often harm vulnerable

groups of people.

It would have been a positive, pragmatic result if my study found that fair ranking under

uncertain inference was categorically fairer than non-fairness-aware ranking, even if it did not

achieve optimal fairness. Unfortunately, this is not the case: in some instances, groups that
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were not disadvantaged in the baseline, non-fairness aware ranking became disadvantaged

under fair ranking due to errors in inference (e.g., Hispanic men in the Equestrians dataset).

One solution to the problem at hand is uncertainty-aware fair ranking algorithms. There

are newer of fair ranking algorithms that explicitly deal with noisy attributes [142] and also

adjusted fair ranking metrics that account for noise [76] that I did not evaluate in this paper

since they were published after Chapter 3 was published, but I perform a similar analysis with

uncertainty-aware fair classifiers in Chapter 5. As I highlight below in 7.3, uncertainty-aware

algorithms are starting to become a potentially viable alternative to demographic-aware

algorithms in the absence of reliable protected attribute information.

The other solution is to intentionally collect demographic data, thus avoiding inference

entirely. However, this data must be collected with great care and consideration. First,

the choices presented to people (e.g., binary gender or US Census race/ethnicity categories)

constrain the groups that can ultimately benefit from fairness interventions. Second, designers

must determine whether self-reported or perceived demographic attributes are more appro-

priate for their context. For example, AirBNB purposefully uses perceived demographics

to identify patterns of discrimination by hosts against guests [16]. Third, when classifying

people I must always consider the potential for reifying oppressive structures [93]. In a given

ranking context, if people are reluctant to divulge demographic data or there is the potential

for this data to be misused, then designers must seriously consider whether algorithmically

ranking people is appropriate in the first place.

7.2 Subverting Fair Image Search with Generative Adversarial

Perturbations

In this study, I develop a novel, adversarial ML attack against fair ranking algorithms,

and use fairness-aware text-to-image retrieval as a case study to demonstrate my attack’s

effectiveness. Unfortunately, I find that my attack is very successful at subverting the fairness

algorithm of the search engine—across an extensive set of attack variations—while having

almost zero impact on search result relevance.

Although I present a single case study, I argue that my attack is likely to generalize.

I adopt a strong threat model and demonstrate that my attacks succeed even when the

attacker cannot poison training data, access the victim’s whole image corpus, or know what
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models are used by the victim. Thus, my attack is highly likely to succeed in cases where the

threat model is more relaxed, e.g., when the fairness algorithm used by the victim is known.

Alarmingly, my work shows that an adversary can attack a fairness algorithm like FMMR

even when it does not explicitly rely on demographic inference. Thus, it is highly likely that

my attack will also succeed against any ranking algorithm that does rely on a demographic

inference model, even if that model is highly accurate. I explore this possibility to the best

of my ability in 4.5.4.

Above all, this work highlights that achieving demographic fairness requires high-quality

demographic data [10]. Allowing an adversary to influence demographic meta-data is the

underlying flaw that enables my attack to succeed. Demographic data may be sourced from

data subjects themselves, with full knowledge and consent, or from human labelers [16], with

the caveat that these labels themselves will need to be de-biased [220].

Like all adversarial attack research, my methods can potentially be misused by bad actors.

However, this necessisates my research, since documenting vulnerabilities is a crucial first

step in mitigating them. Currently, except for Shopify and LinkedIn, few services employ

fair ranking systems, leaving a window of opportunity to identify attacks, raise awareness,

and deploy mitigations. It is not my intention to hinder the adoption of fair ML techniques,

but rather to demonstrate that fairness guarantees can be weaponized. This will energize

the research community to develop mitigations, such as making models more robust and

adopting high-quality sources of demographic data that are resistant to manipulation. To

facilitate mitigation development without arming attackers, I release my code and data to

researchers only upon request.

Prior work on adversarial ML attacks against fairness made their source code publicly

available [153]. However, because attack tools are dual-use, I have opted to take a more

conservative approach: I will only share source code with researchers from (1) research

universities (e.g., as identified by taxonomies like the Carnegie Classification) and (2) com-

panies that develop potentially vulnerable products. Given that my attack can be used for

legitimate, black-box algorithm auditing purposes, I opt to restrict who may access my source

code rather than the uses it may be put towards. In my opinion, this process will facilitate

follow-up research, mitigation development, and algorithm auditing without supplying bad

actors with ready-made attack tools.

Like many works in the computer vision field, I rely on images with crowdsourced and
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inferred demographic labels. Both processes have been criticized for their lack of consent [82],

the way they operationalize identity [180], and the harm they may cause through mis-

identification [21]. These problems reinforce the need for high-quality, consensual demographic

data as a means to improve ethical norms and defend against adversarial ML attacks.

I believe that future work is needed to develop more robust fair ML interventions. I adopt

a broad view of possible mitigations, spanning from value sensitive design [68] methods that

help developers preemptively identify attack surface and plan defenses [57], to models that

are hardened against adversarial perturbation techniques [7, 84], to auditing checklists [166]

and tools that help developers notice and triage attacks.

7.3 When Fair Classification Meets Noisy Protected Attributes

In this study, I present benchmark results—in terms of accuracy, fairness, and stability—

for 14 ML classifiers divided into four classes. I evaluated these classifiers across four datasets

and varying levels of random noise in the protected attribute. Overall, I found that two

classical fair classifiers (SREW and EGR), one noise-tolerant fair classifier (PRIV), and

one demographic-blind fair classifier (ARL) performed consistently well across metrics on

my experiments. In the future I recommend that ML researchers benchmark their own fair

classifiers against these classifiers and that practitioners consider adopting them.

One surprising finding of my study was how well SREW and EGR performed in the face of

noise in the protected attribute. Contrast this to noise-tolerant classifiers like MDRO—whose

performance did not vary with noise but was inaccurate on some datasets—and SOFT—which

was consistently inaccurate and had variable fairness in the face of noise. These results

suggest that some classical fair classifiers may actually fare well in the face of noise, and that

adopting more complex noise-tolerant fair classifiers may not always be necessary.

Another surprising finding of my study was how well ARL performed. As a demographic-

blind fair classifier it did not have access to the sex feature at training or testing time, yet it

achieved fairness performance that was comparable to demographic-aware fair classifiers on

three of my datasets, and its fairness performance was noise invariant on three datasets as

well. I fit linear regression models on each dataset with sex as the independent variable, but

these models did not uncover any obvious proxy features for ARL to use in place of the sex

feature. This speaks to the strength of the ARL algorithm’s adversarial approach to learning.
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On one hand, my results confirm that demographic-blind fair classifiers can achieve fairness

for real-world disadvantaged groups under ecological conditions. This is positive news for

practitioners who would like to adopt a fair classifier but lack (high-quality) demographic

data. Demographic-blind fair classifiers may even be practical solutions to the problems I

investigated in the previous two chapters, as discussed in 7.1 and 7.2. On the other hand, I

still urge caution with respect to the adoption of demographic-blind fair classifiers for some

further downstream practical reasons. First, determining whether a classifier like ARL will

achieve acceptable performance in a given context requires thorough evaluation on a dataset

that includes demographic data, as I have done here. Second, even if a demographic-blind

fair classifier performs well in testing, its performance may degrade after deployment if the

context changes or there is distribution drift [81]. Monitoring the health of a classifier like

ARL in the field requires demographic data. In short, adopting a demographic-blind classifier

does not completely obviate the need for at least some high-quality demographic data.

In general, the results of my study point to the need for further development in the areas

of noise-tolerant and demographic-blind fair classifiers. By releasing my source code and

data, I hope to provide a solid foundation for evaluating these novel classifiers in the future.

7.4 FairCanary: Rapid Continuous Explainable Fairness

In this work I present a novel metric called QDD that improves on conventional fairness

metrics by not requiring prediction labels or threshold values (6.2.2). I utilize this metric

in FairCanary, a system for performing continuous monitoring of deployed ML models.

FairCanary includes all of the typical capabilities of ML monitoring systems [50]: it records

inputs to and outputs from the model over time, calculates traditional measures of model

performance (e.g., accuracy), allows operators to set configurable alerts if model performance

changes dramatically, and calculates explanations for individual predictions using existing

techniques [135,198].

Additionally, FairCanary is able to provide explanations for QDD by reusing the ex-

planations for individual predictions, which is (1) a capability not offered by conventional

fairness metrics and (2) less computationally demanding than similar approaches from prior

work [145] (6.2.3).

Through examples (Figure 2.1) and a synthetic case study (6.3), I demonstrate the

functionality of FairCanary and the useful properties afforded by my QDD metric. I publicly
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release the code 1 used to generate the plots in my case study.

Regardless of whether ML models are regulated to mandate audits and continuous

monitoring, I argue that ML practitioners have a professional and moral obligation to ensure

that the systems they deploy do not misbehave. Given that issues like drift are known to

occur, and that these issues may cause unfairness and bias, I argue that monitoring systems

should become a standard component of most, if not all, deployed ML-based systems.

7.5 Final Thoughts

My findings highlight the importance of a holistic approach to implementing fair machine

learning algorithms that takes into account the unique characteristics of the real-world

context in which they will be deployed. This includes considerations such as the quality and

representativeness of the training data, the choice of fairness metrics used to evaluate the

performance of the algorithm, and the potential for unintended consequences due to a lack of

anticipated deployment time challenges, such as not accounting for malicious actors that can

convert the fair algorithm into a tool of oppression, or a fair algorithm becoming unfair over

time due to the changing nature of real world datasets. My hope is that by adopting a more

practice oriented approach to implementing fair machine learning, practitioners can help

ensure that these algorithms achieve their intended goals of promoting fairness and equity

for all individuals.

7.6 Future Research

I would like to continue on my path of exposing shortfalls of real world sociotechnical

systems, and designing solutions for fairer ML that works in both theory and practice.

Adversarial defenses against fairness attacks: I have already shown that it is

possible to attack fair ML models via adversarial attacks to cause them to become unfair [80].

I plan to investigate solutions to such an attack, through a mix of methods such as adversarial

training, cloaking defenses, and online learning with bias annotations, to find a solution that

is both computationally scalable and robust against not just black box attacks, but hopefully

1https://github.com/fiddler-labs/faircanary
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also stronger white box attacks.

Machine unlearning to remove problematic training data: I have taken a

keen interest in the rampant phenomenon of massive models being trained on data scraped

without consent—this includes both Large Language Models (LLMs) and also Text-to-Image

Generation models. These models have been shown to be riddled with sexist, racist, toxic,

or factually incorrect content in their outputs—that the model creators themselves believe

are too difficult to correct for. Text generation models such as Github Copilot2 and image

generation models such as DALL.E3 also presents the deeply concerning aspect of models

trained on unconsenting individuals’ data and then using them for profit [78]. Retraining

such massive models from scratch is a prohibitively expensive task, and I believe building on

early research work in machine unlearning—to build a tool for individuals to request model

owners to “forget” their training data and respect their IP—is the more feasible technical

solution to this predicament. Machine unlearning is largely unexplored, and I plan to work

with both machine learning scientists in academia and companies who are in the business of

commercializing these models to find actionable, cheaply computable, and scalable unlearning

solutions.

Injection of bias via human stakeholders: Humans can impact the behavior of a

ML pipeline in at least two ways: bias added by annotators in the annotation stage before

model training, and personal bias of the decision makers who are in charge of converting

predictions into outcomes. While creating ML datasets, it would be interesting to measure

annotator perspective and cultural bias in annotations—whether the gaps in perception

are different for different demographic groups. Normatively speaking, I would like to think

more deeply about whether a person’s self disclosed attributes are the more important

factor in corrective fairness techniques than what the majority of annotators think is their

label. In terms of decision making bias, I would like to delve deeper into how humans

in charge of making final decisions might subvert algorithmic fairness interventions—for

instance, human recruiters on the other end of a fair candidate ranking system. This would

involve working with people in human computer interaction, labor economics, and psychology.

2https://github.com/features/copilot
3https://openai.com/dall-e-2/
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Developing actionable policy: I would like my solution-focused research approach to

inform better regulation of AI/ML practice. I plan to initiate dialogue with policymakers

and regulatory agencies worldwide, such as the FTC and CFPB in the US or analogous

bodies within the EU Commission, to help fine tune policy. I would also set aside time

for my research group to respond during public comment periods for any new regulations

proposed by regulatory agencies. My belief is that my work will be able to highlight specific

technical interventions that model operators can take to implement AI responsibly, and

such specific regulation will avoid cases of escaped accountability due to vague regulatory

language. Ultimately, I would like my research to shape policy and have lasting positive

impact on society.
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