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Abstract

The contemporary Google Search Engine Results Page
(SERP) supplements classic blue hyperlinks with complex
components. These components produce tensions between
searchers, 3rd-party websites, and Google itself over clicks
and attention. In this study, we examine 12 SERP com-
ponents from two categories: (1) extracted results (e.g.,
featured-snippets) and (2) Google Services (e.g.,
shopping-ads) to determine their effect on peoples’ be-
havior. We measure behavior with two variables: (1) click-
through rate (CTR) to Google’s own domains versus 3rd-party
domains and (2) time spent on the SERP. We apply causal in-
ference methods to an ecologically valid trace dataset com-
prising 477,485 SERPs from 1,756 participants. We find that
multiple components substantially increase CTR to Google
domains, while others decrease CTR and increase time on
the SERP. These findings may inform efforts to regulate the
design of powerful intermediary platforms like Google.

1 Introduction
The presentation of results on Google Search has evolved
significantly from its humble beginnings as a list of ten blue
hyperlinks. In 2007, Google introduced “Universal Search,”
blending results from its Images, Maps, News, and Video
vertical search properties into a single Search Engine Results
Page (SERP).1 Five years later, Google added the “Knowl-
edge Graph,” which powers the presentation of facts in the
main results column and knowledge panels on the right-hand
side of the SERP.2 In 2014, Google added “Featured Snip-
pets,” which extract a prominent and readable page descrip-
tion from a website and place it above the website’s listing.3
Collectively, these additions to SERPs beyond simple, or-
ganic links are referred to as components (Robertson, Lazer,
and Wilson 2018).

From a normative perspective, components matter for at
least two reasons. First, previous work has shown that spe-
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1https://googleblog.blogspot.com/2007/05/universal-search-
best-answer-is-still.html

2https://blog.google/products/search/introducing-knowledge-
graph-things-not

3https://blog.google/products/search/reintroduction-googles-
featured-snippets

cific components can affect peoples’ behaviors. For exam-
ple, Chilton and Teevan (2011) found that direct answers,
such as definitions and facts, can reduce traffic from the
SERP to 3rd-party (i.e., non-Google) websites. This high-
lights a tension between stakeholders: users may benefit
when search engines directly answer their questions (Diriye
et al. 2012; Williams et al. 2016), leading to good aban-
donment (Li, Huffman, and Tokuda 2009) of search activ-
ity. Google may also benefit, by bolstering the primacy of
their search engine as an authoritative source of informa-
tion (McMahon, Johnson, and Hecht 2017). However, 3rd-
party websites may receive less traffic, leading to a range
of problematic outcomes such as loss of revenue and ero-
sion of community. Several studies have highlighted this
tension in the context of Wikipedia, which Google Search
heavily relies on for answer and knowledge components, but
which itself relies on a continuous stream of volunteers to
sustain its peer-production community (McMahon, Johnson,
and Hecht 2017; Vincent et al. 2019).

The second reason that components matter is concern over
self-preferencing, in which a powerful intermediary plat-
form prioritizes its own products and services over com-
parable offerings from 3rd-parties (Subcommittee on An-
titrust, Commercial and Administrative Law 2022; Compe-
tition and Markets Authority 2020). In 2020, thirty US state
attorneys general filed a lawsuit that cites self-preferencing
in SERPs as one form of allegedly anticompetitive conduct
in which Google has engaged—“Google throttles consumers
from bypassing its general search engine and going directly
to their chosen destination.”4 In response to these lawsuits,
Google argues that people prefer a SERP full of components,
citing as evidence other search engines that emulate Google
Search’s design.5

Given these value tensions—between searchers, Google,
and 3rd-party websites—it is critical that we understand the
effects of design decisions in Google SERPs on peoples’
behaviors. For example, regulators around the world are
proposing novel rules on the design of powerful online in-
termediary platforms like Google (European Commission

4https://coag.gov/app/uploads/2020/12/Colorado-et-al.-v.-
Google-PUBLIC-REDACTED-Complaint.pdf

5https://blog.google/outreach-initiatives/public-policy/
redesigning-search-would-harm-consumers-and-american-
businesses



2022). However, it is difficult to craft these rules thought-
fully or assess their impact without first quantifying the un-
derlying human behaviors at issue. To date, such a compre-
hensive understanding does not exist, in part because obtain-
ing large-scale, ecologically valid data about peoples’ web
search and browsing behavior is challenging.

In this study, we aim to address this knowledge gap
by studying the causal effect of Google SERP com-
ponents on peoples’ behaviors. We examine two sets
of components, corresponding to the two motivations
above. First, we use the term extracted results to refer
to five components—direct-answers, featured-
snippets, knowledge-panels, top-stories, and
top-image-carousels—that present extracted infor-
mation prominently on the SERP in an attempt to di-
rectly address peoples’ information needs. We analyze
how this set of components affects peoples’ informa-
tion seeking behaviors. Second, we use the term Google
Services to refer to seven components—videos, im-
ages, ads, shopping-ads, local-results, map-
results, and scholarly-articles—that Google
either owns or directly monetizes. We analyze whether this
set of components increases click-through rates (CTR) to
Google properties at the expense of 3rd-party websites. Fig-
ures 1 and 2 include screenshot examples of all 12 compo-
nents.

Specifically, our research questions are:
• RQ1: What effect do extracted results have on behavior,

operationalized through (RQ1a) CTR and (RQ1b) time
on the SERP?

• RQ2: What effect do Google Services have on traffic,
measured through (RQ2a) organic CTR6 to 1st-party
sites (google.com and youtube.com) and (RQ2b)
organic CTR to 3rd-party sites (all other domains)?

To answer these questions, we apply causal inference
methods to a large and ecologically valid trace dataset
comprising 477,485 SERPs from 1,756 participants. Our
methodological approach exploits variation in SERP compo-
sition to find similar pairs of queries that triggered different
components. Take featured-snippets as an example:
if we can find similar pairs of queries—one that triggered
a featured-snippet and one that did not—and control
for remaining contextual differences, we can attribute differ-
ences in behavior to the featured-snippet.

Our main findings are:
• RQ1: Direct-answers and featured-
snippets decrease CTR and increase time on
the SERP. We don’t find a significant effect of
knowledge-panels on either outcome.

• RQ2: Local-results and images increase organic
CTR to 1st-party domains, while local-results,
images and shopping-ads decrease organic CTR to
3rd-party domains.

In the rest of the paper, § 2 contextualizes related work,
§ 3 introduces our dataset, § 4 presents our approach to

6Organic CTR is the rate of clicks on organic links, as opposed
to clicks on ads.

(a) Direct Answer (b) Direct Answer (Dictionary)

(c) Featured Snippet (d) Knowledge Panel

(e) Top Stories (f) Top Image Carousel

Figure 1: Examples of extracted results components.

causal modeling, § 5 summarizes our results, and § 6 dis-
cusses the implications of our findings.

2 Related Work
2.1 Auditing Search Engines
Algorithm audits, especially those focusing on knowledge
components, inform RQ1. Algorithm auditing is a method-
ology that systematically scrutinizes algorithmic systems by
varying inputs and comparing outputs (Sandvig et al. 2014).
Previous audits of search engines have interrogated person-
alization (Hannak et al. 2013; Kliman-Silver et al. 2015),
politics (Robertson et al. 2018; Hu et al. 2019), news (Lurie
and Mustafaraj 2018; Trielli and Diakopoulos 2019), and au-
tocomplete (Noble 2018; Robertson et al. 2019).

The most relevant category of audits for this work scru-
tinizes knowledge components. McMahon, Johnson, and
Hecht (2017) examined the effect of knowledge components
on traffic to Wikipedia using a controlled study. They found
that the “Wikipedia Visitation Rate” increased from 11.1%
to 20.5% when Wikipedia-based knowledge components
were removed from SERPs.7 Furthermore, people attributed
the source of knowledge components to Google. Lurie and
Mustafaraj (2018) found that knowledge-panels were

7“Knowledge components” here encompass
direct-answers and knowledge-panels in our study.



(a) Videos (b) Images

(c) Ad (d) Shopping Ads

(e) Map Results (f) Local Results

(g) Scholarly Articles

Figure 2: Examples of Google Services components.

insufficient to make definitive credibility assessments, while
Lurie and Mulligan (2021) found that 70% of results with
misleading information about congressional representatives
appeared in featured-snippets. Finally, lab studies
have found that the information in knowledge components
can affect peoples’ beliefs. Ludolph et al. (2016) found that
comprehensible vaccine information in knowledge panels
reduced vaccine skepticism. Epstein et al. (2022) found that
featured snippets can potentially shift voting preferences.

2.2 Self-Preferencing
Experimental studies and reports from regulatory agencies
on self-preferencing both inform RQ2. Luca et al. (2015)
conducted a controlled experiment that manipulated listings
in local-results. They found that people were 40%

more likely to click on local-results when they con-
tained competitors’ listings. Edelman and Lai (2016) eval-
uated a natural experiment around the launch of Google
Flights, in which idiosyncratic differences in search queries
affected its presence (our causal identification strategy is
very similar, see § 4). The authors found that Google Flights
increased the volume of paid clicks by 65% and decreased
the volume of organic clicks by 55%. Jeffries and Yin (2020)
conducted a scraping experiment of mobile search using a
sample of 15,000 trending queries. They parsed SERPs us-
ing a spatial approach (Vincent and Hecht 2021) and found
that Google devoted 41% of the first page to a combination
of its own properties and “direct answers”.8 Methodologi-
cally, our paper combines the high-resolution SERP parsing
of Jeffries and Yin (2020) with ecologically valid behavioral
data like that in Edelman and Lai (2016).

Self-preferencing has received regulatory attention in Eu-
rope, the US, and the UK. In its 2017 “Shopping” case,
the EC found that Google abused its dominance in gen-
eral search by favoring its own comparison shopping ser-
vice (Official Journal of the European Union 2018). In re-
sponse to this decision, Google was mandated to implement
a remedy, and they introduced an auction for placement in
shopping-ads, which competitors testify might be mak-
ing the situation worse (Competition and Markets Author-
ity 2020). In a 2020 report, the UK’s Competition and Mar-
kets Authority (CMA) (Competition and Markets Authority
2020) found that most specialized vertical search engines
rely on Google for over 40% of their traffic and spend, on
average, 55% of their ad budget on Google. It also cited in-
dustry studies finding that Google’s Travel results are listed
first 98% of the time and that a competitor’s CTR decreased
by 46.5% when placed below the Flights component.

2.3 Web Search
Two lines of research on web search are relevant to our re-
search questions: good abandonment (RQ1) and aggregated
search (RQ2).

Li, Huffman, and Tokuda (2009) introduced the concept
of good abandonment, defining it as “an abandoned query
for which the user’s information need was successfully ad-
dressed by the search results page, with no need to click on a
result or refine the query.” Diriye et al. (2012) found that par-
ticipants abandoned 22% of queries and were satisfied with
38% of those abandonments. On mobile search, Williams
et al. (2016) found that people credit direct-answers
as the reason for 56% of good abandonments.

Aggregated search integrates results from multiple spe-
cialized search verticals into a single SERP (Arguello et al.
2017). In a study on image, news, and “encyclopedia” ver-
ticals, Liu et al. (2015) found that (1) relevant and visually
appealing verticals garner more attention, (2) organic results
below a vertical receive less attention, and (3) irrelevant
verticals increase attention on organic results. Bota, Zhou,
and Jose (2016) found that the presence of knowledge-
panels increased time spent inspecting organic results,

8“Direct answers” here encompass featured-snippets,
direct-answers, and knowledge-panels in our study.



Number of SERPs Number of Users

original 857714 1932
basic cleaning 761797 1900
refined 587373 1890
parsing errors 542488 1774
navigational 477485 1756

Table 1: Summary of SERP dataset filtering steps, including
our handling of refined queries and navigational searches.

while Navalpakkam et al. (2013) found a second golden tri-
angle—an attention focal point—in the top left corner of
knowledge-panels.

3 Data
This section describes (1) how we collected and pre-
pared our dataset, (2) how we operationalized our treat-
ment variable—component type, (3) how we measured
our outcome variables—clicks and time on the SERP, and
(4) presents a baseline comparison of outcome variables.

3.1 Data Collection and Preparation
From April through December 2020, we recruited partici-
pants to install a custom browser extension that we made for
Chrome and Firefox. Recruitment was handled in two, paral-
lel waves by the survey company YouGov and the panel ag-
gregator PureSpectrum. Our experimental protocol was ap-
proved under Northeastern IRB #20-03-04. See § 7.1 for fur-
ther discussion of our experimental protocol and approach to
protecting participants.

To measure participants’ web search behavior, our
browser extension collected two types of passive, obser-
vational data: browsing history and snapshots of Google
Search Engine Result Pages (SERPs). The browsing history
data contains the sequence of URLs that participants loaded
in their browser. The snapshot data contains the complete
HTML of the Google SERPs that participants saw. We use
WebSearcher to parse the SERPs into ordered lists of
components (Robertson and Wilson 2020).

We applied four filtering steps to prepare our Google
Search data for analysis. Table 1 lists these steps, along with
how much data—in terms of total searches and participants
who contributed at least one search—remained after apply-
ing each step. First, we performed basic cleaning, e.g., re-
moving searches with the tbm URL parameter, which in-
dicates that the search was made on a separate vertical like
Images or News.

Second, we removed queries that were immediately re-
fined, i.e., the next URL in a participant’s browsing history
is another Google search. Diriye et al. (2012) found that 45%
of abandoned (zero-click) searches were triggered by query
refinement. Filtering refined queries increases the likelihood
that the remaining zero-click searches represent good aban-
donment instead of bad abandonment (Diriye et al. 2012).
Third, we filter out SERPS that show evidence of a parsing
error. This gives us confidence that we label the treatment
correctly on the SERPs we keep.

Finally, we remove navigational queries, where a person
searches for a specific website, often by name, and then
clicks on the result that points to that website. Navigational
queries are a specific class of searches with very strong in-
tent, which makes it inappropriate to compare click behav-
ior on these searches to click behavior on other types of
searches. Information about how we identify navigational
queries can be found in § 7.1 in the Appendix.

3.2 Treatment Variable
We operationalize our treatment variable—component
type—as the component in the top vertical position on a
SERP. For each treatment, the SERPs in the control group
have (1) a general component (classic blue link) in the
top vertical position and (2) no treatment components any-
where else on the SERP. Figure 3a shows an example of
the featured-snippet treatment condition, while Fig-
ure 3b shows a possible control for this treatment. We make
one exception to this definition when the treatment variable
is a knowledge-panel, which appears on the right-hand-
side of the SERP. In this case, both the treatment and control
conditions have a general component (classic blue link)
in the top vertical position.

We focus on the top vertical position because 30% of the
clicks in our dataset are on the top vertical result and half of
the components appear almost exclusively in the top vertical
position (see Figure 4).

3.3 Outcome Variables
Clicks Click measurement consists of two steps: (1) ex-
tract all URLs from a given SERP, and (2) check if the next
URL in a participant’s browsing history is contained in this
set. This means that we measure clicks (1) as binary vari-
ables and (2) at the page-level. It is common practice to
measure clicks at the page-level in work on good abandon-
ment (Williams et al. 2016; Diriye et al. 2012).

We also measure two characteristics of clicks to answer
our research question about self-preferencing (RQ2). First,
we separate clicks on ads from clicks on organic links us-
ing the gclid URL parameter.9 This is important because
paid and organic clicks are different forms of traffic. From
now on, we refer to clicks on organic links as “organic
clicks.” Second, we distinguish between clicks to 1st-party
domains (i.e., transitions from a SERP to google.com or
youtube.com) and clicks to 3rd-party domains (every-
where else). Using these methods, we find that the page-
level CTR is 52.5%, 95.7% of clicks are on organic links,
and 86.0% of clicks are to 3rd-party domains.

Time on the SERP We measure time on the SERP
(RQ1b) as the number of seconds elapsed between a visit
to a SERP and the visit to the subsequent URL (regardless
of whether the subsequent visit was the result of a click on
the SERP). Thus, time on the SERP is a positive, continuous
variable with a right-skewed distribution. Following Athey,
Mobius, and Pal (2021), we cap time on the SERP at five
minutes—longer times suggest a participant has left their

9https://support.google.com/google-ads/answer/9744275



(a) Featured-snippet treatment condition (b) Featured-snippet control condition

Figure 3: Example of treatment and control conditions for the featured-snippet component type from our dataset. The
two queries are exactly the same, yet the SERPs differ. We exploit this variation in SERP composition to make causal claims
from observational data: does the component (a featured-snippet in this example) increase the likelihood of clicking
on a link or the expected amount of time spent on the SERP? We choose an example with a query that was searched by eight
different participants to protect participants’ anonymity.
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Figure 4: Distributions of components over vertical ranks.

computer. After truncation, the median time on the SERP
is 11.7 seconds. 86.7% of the observations have time spent
between one second and one minute (inclusive).

3.4 Baseline Comparison
Tables 2 and 3 present baseline difference-in-means between
outcome variables in the treatment and control groups for
extracted results (RQ1) and Google Services (RQ2). The
direct-answer type includes answer boxes, dictionary
results, and finance and sports widgets.

We see that four out of five extracted results are associ-

ated with lower CTRs and all five are associated with longer
times on the SERP. Five out of seven Google Services are
associated with higher organic CTRs to 1st-party domains
and six out of seven are associated with lower organic CTRs
to 3rd-party domains. However, these baseline differences
might simply reflect the types of search queries that trig-
ger each component. This motivates us to apply more so-
phisticated methods to understand the casual relationships
between components, CTR, and time on the SERP.

4 Methods
This section describes how we (1) identify confounders that
must be controlled, (2) operationalize those confounders,
(3) adjust for those confounders to estimate causal effects,
and (4) evaluate the sensitivity of our estimates. At a high-
level, our estimation approach involves (a) finding similar
pairs of queries in different treatment conditions (i.e., match-
ing) and then (b) adjusting for the remaining contextual dif-
ferences with a regression model.

Throughout this section we use the effect of a
featured-snippet on CTR (RQ1a) as a running ex-
ample to motivate and explain our methodological choices.

4.1 Identifying the Effect
Figure 5 shows a causal diagram that represents our assump-
tions about the data-generating process for one search. A
user has a search intent, from which they formulate a query
that they submit to Google Search. In response, Google
Search generates a SERP that contains results spanning dif-
ferent topics and component types. Next, the person decides



Sample CTR Time
Component Size Difference Difference (s)

featured-snippet 82589 -0.10 11.15
knowledge-panel 60246 -0.12 4.88
direct-answer 26054 -0.37 21.14
top-stories 16904 0.02 4.38
top-image-carousel 10495 -0.05 4.45

Table 2: Baseline differences for extracted results (RQ1).

Organic CTR Difference to

Component Sample Size 1st-Parties 3rd-Parties
ad 34999 -0.01 -0.05
shopping-ads 32957 0.04 -0.09
videos 12966 0.15 -0.13
images 9803 0.25 -0.18
local-results 6447 0.22 -0.15
map-results 4036 0.28 -0.18
scholarly-articles 2376 -0.01 0.02

Table 3: Baseline differences for Google Services (RQ2).

whether to click on any of the links on the SERP based on
their search intent and the displayed results. Finally, the per-
son’s interaction with the current SERP influences the gen-
eration of the next SERP. In this example, the treatment vari-
able is the presence of a featured-snippet at the top
of the SERP, and the outcome variable is a click.

We use the backdoor criterion (Glymour, Pearl, and Jewell
2016) to identify the minimal adjustment set—the smallest
set of confounding variables that block all biasing paths in
Figure 5. The minimal adjustment set consists of four con-
founding variables that are observable in our dataset: (1) the
query, (2) topics on the SERP, (3) other components on the
SERP and, (4) click behavior on the previous SERP.10

4.2 Measuring Confounders
We now describe how we operationalize the four con-
founders in our causal model.

Query In a recent comparison of text adjustment strate-
gies, Weld et al. (2022) found that transformer-based rep-
resentations outperformed other text representations. Thus,
we use a pre-trained language model based on the BERT ar-
chitecture (Reimers and Gurevych 2019).11 This model was
fine-tuned to identify semantically similar sentence pairs,
which makes it ideal for the matching step in our estimation
approach (see § 4.3).

Topics We assign topical labels to SERPs based on the do-
mains that appear in links. First, we use the FortiGuard do-

10A subset of participants in our sample responded to a demo-
graphic survey. In an online appendix, we describe these responses
and additionally adjust for demographics, which can be inter-
preted as proxies for a person’s intent: https://github.com/jlgleason/
google-the-gatekeeper.

11Its model card can be found here: https://huggingface.co/
sentence-transformers/all-mpnet-base-v2.

Person’s
Intent

Queryt Google’s
Retrieval &

Ranking
Algorithms

Featured-Snippet

Topics

Other Components ClicktClickt-1

SERP

Figure 5: A causal diagram for searching and clicking.
In this case, the treatment variable is the presence of a
featured-snippet at the top of the SERP, and the
outcome variable is a click. The green path represents the
causal effect of interest, while the grey paths represent bi-
asing paths. Red nodes represent confounding variables and
gray nodes represent unobserved variables. The subscript t
denotes events that happen within the current search, while
events at t− 1 occurred during a previous search.

main classification service to classify domains into 91 cat-
egories (Vallina et al. 2020). Second, we label each SERP
as a weighted distribution over categories, with weights
taken from the empirical click distribution in our dataset
to account for decaying attention (Papoutsaki, Laskey, and
Huang 2017). For example, our method would assign a
SERP containing three links each with a different topic
the topical distribution [0.50, 0.28, 0.22]. We include the
weights of the 20 most common FortiGuard categories in
the subsequent regression model, which cover 90.9% of the
total topic weight across all SERPs. Figure 6 shows the dis-
tribution of these topics over all SERPs.

Other Components We represent non-treatment compo-
nents as binary variables in the subsequent regression model,
indicating whether or not they were present on the SERP.
For example, the people-also-ask confounder has the
same value (True) for both SERPs in Figure 3.

Previous Behavior We represent previous behavior using
the participant’s click outcome (RQ1a, RQ2) and dwell time
on the previous search (RQ1b). Searches are continuous in
time, thus we include the number of seconds since the previ-
ous search (on the log scale) and interact it with the outcome
on the previous search.

4.3 Estimating the Effect
We now describe our two-step estimation approach, which
consists of matching and regression in the matched sample.

Matching Recent work argues that matching is particu-
larly well-suited to address confounding from text in obser-
vational studies because it is interpretable—humans can in-
spect matches and assess them qualitatively (Roberts, Stew-
art, and Nielsen 2020; Mozer et al. 2020; Keith, Jensen,
and O’Connor 2020). In our application, text—the query—
is the most important confounder because it blocks the bi-
asing path through a person’s search intent. According to
Stuart (2010), matching designs consist of four steps: (1) de-
fine a similarity measure, (2) implement a matching method,
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Figure 6: Distribution of topics, one of our confounding vari-
ables, over all SERPs.

(3) evaluate the quality of the matches, and (4) analyze the
outcome (e.g., with a regression model).

Our similarity measure is the cosine similarity between
two query vectors (e.g., A and B): A∗B

∥A∥∥B∥ . Mozer et al.
(2020) found that the cosine similarity produced the best
text match quality in a study of five different similarity met-
rics applied to news articles. There are also strong reasons
to prefer the cosine similarity over both propensity score
matching (PSM) (Rosenbaum and Rubin 1983) and coars-
ened exact matching (CEM) (Iacus, King, and Porro 2012).
First, matched pairs from PSM cannot be directly assessed
because PSM replicates a randomized experiment (King and
Nielsen 2019)—matched groups are only similar in expec-
tation. Second, CEM suffers from the curse of dimensional-
ity: there may be vanishingly few exact matches, even if the
query string has been coarsened (Mozer et al. 2020; Roberts,
Stewart, and Nielsen 2020).

Our matching method is 1:1 matching without replace-
ment. After finding matches, our goal during match evalua-
tion was to select a cosine similarity threshold above which
matched pairs for all components were substantively similar.
This is where we took advantage of text matching’s inter-
pretability. Specifically, two authors manually examined 30
random matches for each treatment condition and assessed
whether the matched control queries could have reasonably
elicited the treatment component.12 Based on this evalua-
tion procedure, we chose a threshold of 0.85. Table 4 shows
the mean cosine similarity and the number of matches re-
tained at this threshold for all treatments. Figure 7 shows that
matching also improves balance with respect to the other
confounders not included in the matching specification.

Finally, one disadvantage of dropping so many matches

12During this evaluation procedure, we discovered that there
were not enough high-quality matches for six additional compo-
nents that we parsed successfully—hotels, flights, jobs,
translation, recipes, and twitter-cards. This demon-
strates the importance of directly assessing matched pairs.

Mean Matches
Component Cosine Similarity Retained
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featured-snippet 0.92 3330
knowledge-panel 0.92 1557
top-stories 0.94 1057
top-image-carousel 0.96 915
direct-answer 0.92 345
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ad 0.95 2223
shopping-ads 0.93 1090
local-results 0.90 306
videos 0.93 300
images 0.91 170
map-results 0.90 127
scholarly-articles 0.91 126

Table 4: Matching summary after filtering matches with co-
sine similarity below 0.85.

is that we cannot generalize to the entire treated population
(i.e., all SERPs with a featured-snippet at the top
of the page) (Ho et al. 2007). However, Greifer and Stuart
(2021) argue—and we agree—that this trade-off is worth it
for treatment effect discovery, i.e., a precise and robust esti-
mate in some population.

Outcome Analysis The last step in a matching design is
to analyze the outcome in the matched sample. We do so
using a regression model that adjusts for the remaining dif-
ferences between covariates in Figure 7. For click outcomes
(RQ1a, RQ2), we use a logistic regression model with in-
dependent Cauchy(0, 2.5) priors on the coefficients, which
prevents complete separation (Gelman et al. 2008). For time
on the results page (RQ1b), we use a generalized linear
model with a gamma distribution and log link.

After fitting the outcome model, we use g-computation to
estimate the marginal effect, the quantity that would be es-
timated in a randomized experiment (Snowden, Rose, and
Mortimer 2011). This approach uses the regression model
to simulate potential outcomes under treatment and control
for each search. The marginal effect is then the average dif-
ference between the potential outcomes. This is the effect
measure that we present in Figures 8 and 9. We compute
standard errors using the delta method and cluster at the par-
ticipant level to account for dependence within participants.

4.4 Sensitivity Analysis
A key threat to validity in observational studies is unmea-
sured confounding. We evaluate how strong unmeasured
confounding would have to be to explain away our estimates
using the E-value (VanderWeele and Ding 2017). The E-
value measures the minimum strength of association con-
founders must have with both the treatment and outcome—
above and beyond measured covariates—to shift the con-
fidence interval to the null (i.e., no effect). The E-value is
similar to Cinelli and Hazlett (2020)’s robustness value, but
it is measured on the risk ratio scale instead of the partial
R2 scale. Thus, we can use it with our non-linear outcome
models (i.e., logistic and gamma regression).
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Figure 7: Covariate balance before and after matching mea-
sured using standardized mean differences. The y-axis in-
cludes all covariates that are not used for matching. The
dashed vertical lines represent a standardized mean differ-
ence of 0.1 (Greifer 2022).

We ground the E-value in our measured confounders us-
ing McGowan and Greevy Jr (2020)’s Observed Covari-
ate E-value. This approach removes a set of observed con-
founders (e.g., the topic proportions) from the outcome
model and measures how much the effect estimate changes
on the E-value scale. This benchmarks hypothetical unmea-
sured confounding against the observed confounders.

5 Results
5.1 Effects of Extracted Results (RQ1)
Figure 8a shows the effects of extracted results on CTR.
Direct-answers and featured-snippets both
have significant negative effects, decreasing CTR by -12.1
percentage points (pp) (95% CI -17.1 to -7.0pp) and -6.5pp
(95% CI -8.9 to -4.1pp), respectively. However, both ef-
fects are smaller than the corresponding naive estimates
in Table 2. The effects of knowledge-panels, top-
stories, and top-image-carousels are not distin-
guishable from zero. The naive estimate in Table 2 would
have led us to incorrectly conclude that knowledge-
panels have a large negative effect on CTR.

Figure 8b shows the effects of extracted results on
time on the SERP. Direct-answers and featured-
snippets both significantly increase time on the SERP
by 10.9s (95% CI 3.4–18.4s) and 3.7s (95% CI 1.4–6.0s),
respectively. However, both effects are smaller than the cor-
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Figure 8: Effects of extracted results on CTR and Time on
the SERP.

responding naive estimates in Table 2. The point estimate
for top-image-carousels (4.6s) is also positive, but
its confidence interval overlaps with zero. The effects of the
other two components are not distinguishable from zero.

5.2 Effects of Google Services (RQ2)
Figure 9a shows the effect of Google Services on organic
CTR to 1st-party domains. Local-results and images
both substantially increase CTR to Google properties by a
staggering 22.5pp (95% CI 13.5–31.4pp) and 19.9pp (95%
CI 11.4–28.4pp), respectively. The point estimate for map-
results (9.1pp) is also positive, but its confidence interval
overlaps with zero. The effect of videos is not distinguish-
able from zero, which contrasts with the naive estimate in
Table 3. The reason for this change is that we adjust for the
presence of youtube.com links when we control for the
streaming media topic. Finally, we are confident that ads
have no effect on organic CTR to 1st-party domains, which
validates our methodological approach because Google does
not advertise its own services on Google Search.

Figure 9b shows the effect of Google Services on organic
CTR to 3rd-party domains. Local-results, images,
and shopping-ads all have significant negative effects,
decreasing CTR to 3rd-party domains by -13.9pp (95% CI
-24.5 to -3.3pp), -17.7 pp (95% CI -27.8 to -7.6pp), and -
12.0pp (95% CI -16.2 to -7.7pp), respectively. The effects of
map-results, scholarly-articles, and videos
are not distinguishable from zero.

5.3 Sensitivity Analysis
Figure 10 shows the results of sensitivity analyses using the
E-value. In order to tip any of the significant effects from
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Figure 9: Effects of Google Services on organic CTR to 1st

and 3rd-party domains.

Figures 8 and 9, we require unmeasured confounding that
is stronger than all three groups of measured covariates.
That being said, the two effects that are most susceptible
to unmeasured confounding are the effect of featured-
snippets on time spent on the SERP and the effect of
local-results on organic clicks to 3rd-parties.

6 Discussion
6.1 Extracted Results
We find that both direct-answers and featured-
snippets decrease CTR and increase time on the SERP,
which is broadly consistent with prior work (Chilton and
Teevan 2011; McMahon, Johnson, and Hecht 2017; Ep-
stein et al. 2022). As expected, direct-answers have
a larger effect than featured-snippets on both out-
comes. Interestingly, we do not find a significant effect of
knowledge-panels on either outcome.

Our findings highlight the tensions that knowledge com-
ponents produce between different stakeholders. Users
may benefit when they can answer their questions
marginally faster using information contained directly on
the SERP (Williams et al. 2016). However, the effect of
good abandonment on clicks is consequential for 3rd-parties,
who may lose revenue and visibility. This impact is es-
pecially significant for volunteer-driven non-profits (e.g.,
Wikipedia) and websites whose value is intrinsically built on
having an engaged user base (e.g., StackOverflow) (Vincent
et al. 2019). Historically, Google has also misappropriated
content from small 3rd-parties, e.g., lyrics site Genius and
Celebrity Net Worth, for use in knowledge components (Jef-
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Figure 10: E-value sensitivity analysis. For each treatment-
outcome pair, the E-value represents the minimum amount
of unmeasured confounding needed to tip the confidence in-
terval. Observed covariate E-values demonstrate how much
the confidence bound closer to zero changes on the E-value
scale if we drop one group of covariates.

fries and Yin 2020). One interesting development here is the
Wikimedia Foundation’s release of a commercial product for
companies that use high volumes of Wikipedia content.13

Google and the Internet Archive are its first customers.
The effects we observe increase the importance of work

on the credibility and quality of content in knowledge com-
ponents (Lurie and Mustafaraj 2018; Lurie and Mulligan
2021). Future work should heed Mustafaraj, Lurie, and
Devine (2020)’s argument for “voter-centered audits” (i.e.,
user-centered audits) that focus on the types of information
needs for which searchers use these components. For exam-
ple: what important information needs (e.g., political, health,
financial, and/or legal) do knowledge components attempt
to satisfy? Lab studies have also investigated the effects of
featured-snippets and direct-answers on peo-
ples’ beliefs (Ludolph et al. 2016; Epstein et al. 2022). Fu-
ture work could extend these studies to ecological settings
and assess whether behavioral effects are ephemeral.

Of course, the elephant in the room is the introduction of
chatbot-based search on Google and Bing, which is nothing
if not a knowledge component on steroids. Chatbot-based
search exacerbates concerns about abandonment, misappro-
priation, and information quality (Robertson 2023) that were
originally discussed in the context of knowledge compo-
nents. Future studies could adapt the methods in this paper
to study users’ interactions with chatbot-based search.

6.2 Google Services
We find that local-results and images substantially
increase organic CTR to 1st-party domains, while local-
results, images and shopping-ads significantly de-
crease organic CTR to 3rd-party domains. Interestingly,
shopping-ads have little effect on organic CTR to 1st-
party domains. This means that shopping-ads cause

13https://wikimediafoundation.org/news/2022/06/21/
wikimedia-enterprise-announces-google-and-internet-archive-
first-customers



people to click on ads, but not to navigate to Google’s
shopping-specific vertical search engine.

This combination of effects quantifies the power of search
engine operators who also own services that compete for
attention on their platform: owner-operators can simultane-
ously boost compatriots and beleaguer competitors. Our re-
sults complement the CMA’s macro-level findings that most
specialized search providers rely on Google for over 40%
of their traffic. The 2020 US House report also documented
that negative effects on organic traffic force competitors to
substitute paid clicks for organic clicks (Subcommittee on
Antitrust, Commercial and Administrative Law 2022). Our
study did not evaluate this substitution directly, but we do
measure organic CTR to acknowledge the difference be-
tween organic and paid traffic for 3rd-parties.

Existing remedies for self-preferencing—e.g., the EC’s
“Shopping” decision and the auction mechanism Google
implemented in response—have been criticized for failing
to restore competition (Jeffries 2020). Fortunately, new at-
tempts exist: the EC recently passed the Digital Markets
Act (European Commission 2022), which explicitly forbids
“gatekeepers” from treating their products and services more
favorably than similar products or services offered by 3rd-
parties. In the US, the American Online Innovation and
Choice Act (Klobuchar 2022) would make it illegal for cov-
ered platforms to preference their own products or services.
Our results could be used to support cases brought under
those acts.

6.3 Limitations
Our main limitations revolve around generalization. First,
we acknowledged in § 4.3 that dropping matches prevents
us from generalizing to the entire treated population (e.g.,
all SERPs with a featured-snippet at the top of the
page) within our study. Second, we cannot claim to know
how these effects would transfer to mobile search, although
previous work implies that they would be stronger (Williams
et al. 2016; Jeffries and Yin 2020). Third, these results apply
to a snapshot in time—Google constantly experiments with
new and redesigned components. Thus, effects for specific
components might not generalize temporally.

We also reiterate that our data did not have enough high-
quality matches to estimate the effects of specific Google
Services (i.e., hotels and flights) that have received
attention in previous work (Edelman and Lai 2016; Compe-
tition and Markets Authority 2020). Two factors explain the
lack of high-quality matches: (1) hotel and flight com-
ponents appeared infrequently in our data, and (2) travel-
related searches almost invariably produced SERPs with
hotel, flight, or ads components at the top of the page.
Thus, the lack of quality matches, in and of itself, is evidence
of the extent of self-preferencing in travel-related search.

7 Appendix
7.1 Navigational Searches
Teevan, Liebling, and Geetha (2011) distinguish between
two types of navigational queries: general and personal. We

classify a query q as general navigation using its click en-
tropy: CE(q) = −

∑
d∈D(q) p(d|q)∗log p(d|q), where D(q)

is the collection of domains clicked for query q, and p(d|q)
is the proportion of clicks on domain d among all clicks for
query q. Queries with CE(q) ≤ 1 are classified as general
navigation. We classify repeated queries that a participant
uses to navigate to the same domain as personal navigation.
Finally, we classify queries as navigational if the start or
end of the query matches the top-level domain of the next
URL (Jansen, Booth, and Spink 2008). Overall, we label
9.0% of searches as navigational queries, which is similar
to the 10–21% navigational query rate identified in previous
studies of users on other search engines (Teevan, Liebling,
and Geetha 2011; Jansen, Booth, and Spink 2008).

Ethical Statement
In accordance with our IRB-approved experimental proto-
col, we obtained informed consent from participants before
collecting any data, participants were compensated for in-
stalling our extension, and we informed participants that
they could uninstall our extension at any time. Our exten-
sion automatically uninstalled itself at the end of the data
collection period. Given that the focus of this study is on the
behavior of search engines, not users, we do not anticipate
any adverse impact on participants. We protect participants’
privacy by not sharing any of their individualized data. After
publication we will release the aggregated data and source
code to reproduce the figures in the paper.
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