
WebSearcher: Tools for Auditing Web Search
Ronald E. Robertson
Northeastern University

rer@ccs.neu.edu

Christo Wilson
Northeastern University

cbw@ccs.neu.edu

ABSTRACT
Independent investigations of web search engines have be-
come more prevalent in the last decade, but tools for con-
ducting them have not. We introduce WebSearcher, an open
source python package for archiving and parsing search en-
gine results pages (SERPs) from a major web search engine.
It features a modular parser for decomposing a SERP into
a set of components while preserving details about their
positioning and formatting, which exert a strong influence
on what users pay attention to. Building upon prior work
that identified 14 unique components [21], we identified 22
unique components. Our goal in building this package is to
lower the technical barriers to entry and enable researchers
from all backgrounds and disciplines to examine the outputs
of web search within the context of their own unique re-
search interests and questions. For example, one could use
this package to collect and parse data on how search engines
represent politicians [16, 20], minorities [19], conspiracy the-
ories [1, 9, 10], or health-related topics [3]. In this paper
we provide step-by-step instructions for using WebSearcher
while outlining its functionalities and limitations.
ACM Reference Format:
Ronald E. Robertson and Christo Wilson. 2020. WebSearcher: Tools
for Auditing Web Search. In Proceedings of Computation + Journal-
ism Symposium 2020 (C+J ’20). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/1122445.1122456

INTRODUCTION
There is a long history of people examining the results re-
turned by web search engines, but only recently have these
studies broadly entered public discourse and legal debate.
This entry is, in part, due to growing concerns that search en-
gines can contribute to the oppression and marginalization
of minority groups [19] and have the potential to influence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
C+J ’20, March 20-21, 2020, Boston, Massachusetts
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

critical social functions like voting [7, 12]. However, it is also
due to the evolution of search engine studies - not just in
terms of the methods used, but also in terms of who conducts
them and how they broadcast their findings.
Today, these socially critical systems are being computa-

tionally investigated not just by information retrieval scien-
tists, but by qualitative researchers, journalists, and corporate
research labs among others [5, 6, 23, 24]. Despite this rising
number of web search investigations, there have been few
efforts to release and maintain tools for conducting them.
One reason for the lack of open source libraries for con-

ducting web search audits, is a technical one: the outputs of
search engines are a moving target. That is, their complexity
evolves over time - with knowledge graph, news, and map
components all emerging in recent years [13, 15, 18] - and is
further compounded by A/B testing.

Another major concern is a legal one: the legality of web
scraping. Automated collection of Search Engine Results
Pages (SERPs), despite their public-facing nature and their
potential to influence the public [7, 8, 11, 12], could be a
legally risky endeavor. Until very recently, there lacked legal
precedent for how the automated collection of public-facing
websites would be treated in a court of law. However, on
September 9, 2019 the court ruled in hiQ Labs, Inc. v. LinkedIn
Corp., that accessing “publicly available data will not con-
stitute access without authorization under the CFAA [Com-
puter Fraud and Abuse Act]” [2]. This ruling, while not the
final word, opens the door to releasing online data collection
projects like ours, which we hope is the first of many.

Here we introduce WebSearcher, an open source python
package for conducting web search audits. The goal of this
work is to share the means to conduct web search audits and
enable researchers from diverse background and disciplines
to examine these systems through their lens. It includes tools
for geolocating, scraping, and saving search data, as well as
a modular parser for decomposing a SERP into list of com-
ponents with categorical classifications and position-based
specifications. We chose this modular design to enable ongo-
ing updates for novel components, such as those that appear
during specific seasons, including election seasons [4].

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

C+J ’20, March 20-21, 2020, Boston, Massachusetts Ronald E. Robertson and Christo Wilson

1 GETTING STARTED
The latest version of WebSearcher1 can be downloaded from
the Python Package Index:

pip install WebSearcher

2 CONDUCT A SEARCH
To conduct a search: (1) import the package, (2) initialize a
connection for sending requests to the search engine, and
(3) conduct a search and receive the data.

import WebSearcher as ws

Initialize search engine crawler

se = ws.SearchEngine()

Conduct search and retrieve data

se.search('immigration')

3 SAVE A SEARCH
We recommend immediately saving the raw HTML of incom-
ing SERPs before proceeding. This helps to avoid unexpected
errors that could crash a search session, resulting in missing
data for longitudinal efforts. Our package currently provides
two formats for saving the data from a search: (1) appending
it to a JSON file, or (2) saving it as an HTML file. For con-
tinuous or large scale collection, we recommend the JSON
approach to avoid accumulating excessive data files. For
qualitative explorations of smaller query sets, the HTML ap-
proach enables you to quickly look at the results for specific
searches2 by opening the HTML files in your browser.3

Append to a json file

se.save_serp(append_to='serps.json')

Save as a .html file in a selected directory

se.save_serp(save_dir='./serps')

4 PARSE A SEARCH
As web search continues evolving beyond 10 blue links,
parsers that capture the diverse ways in which informa-
tion is presented and arranged for information seekers will
1For more examples, source code, and contribution instructions, please see
our Github page at: https://github.com/gitronald/WebSearcher.
2HTML files are named by a user-provided or randomly generated ID.
3The HTML approach does not store meta data about the search, although
timestamps could be recovered from the files.

become crucial for understanding how users interact with
these systems [4, 15, 21, 22, 25]. To parse a SERP into a JSON
list of categorized components4

Convert to a parsable format

soup = ws.make_soup(se.html)

Parse the SERP

results = ws.parse_serp(soup)

Example output:

results[0]

{

'type': 'ad',

'serp_rank': 0,

'title': 'Aspen Ideas Festival | 21st Century US ...',

'url': 'www.aspenideas.org/',

'text': 'US immigration processes are convoluted ...',

...

}

5 CONDUCT A LOCALIZED SEARCH
A localized search is a search conducted on your computer,5
but from a location of your choice. To conduct localized
searches: (1) obtain a dataset of “canonical names” for loca-
tions using a function that obtains the most recent version,

Set save location

data_dir = './location_data'

Download latest data

locs = ws.download_locations(data_dir)

(2) find the canonical name for your selected location

f = os.listdir(data_dir)[-1] # Last file

fp = os.path.join(data_dir, f) # File path

locs = pd.read_csv(fp) # Read

Find name containing city (Boston) and state (MA)

regex = r'(?=.*Boston)(?=.*Massachusetts)'

str_mask = locs['Canonical Name'].str.contains(regex)

and, (3) add the canonical name to your search request.

4At present, we can account for 22 unique component types, including ads.
5Localized searches can also be conducted from a remote computer (see §6).

https://github.com/gitronald/WebSearcher

WebSearcher C+J ’20, March 20-21, 2020, Boston, Massachusetts

Conduct a localized search

loc = 'Boston,Massachusetts,United States'

se.search('immigration', location=loc)

6 CONDUCT A REMOTE SEARCH
A remote search is a search conducted on a remote computer.
To connect to that computer, we use secure shell (SSH)6, a
standard software package that enables secure file transfers
over the internet. In this case, the files we’re transferring are
our requests to a search engine, and the response we get is
the resulting page of search results.

import subprocess

Set SSH Connection settings

ip = XX.XXX.XX.XX

port = 6000

keyfile = '/path/to/mykey.pem'

ssh = ws.webutils.SSH(port=port, ip=ip, keyfile=keyfile)

Set permissions on keyfile and open the SSH tunnel

subprocess.call(['chmod', '600', keyfile])

ssh.open_tunnel()

Start a requests session on the same SSH port

sesh = ws.webutils.start_sesh(proxy_port=ssh.port)

Collect a SERP through the remote computer

se.search('immigration', sesh=sesh, ssh_tunnel=ssh)

7 CRAWLING SEARCH RESULT URLS
To obtain additional granularity of the windows to different
corners of the web, one can also collect the HTML for the
URL associated with each result on the SERP. As with saving
the SERP HTML, we offer two options here: (1) append it
to a JSON file, or (2) save it as an HTML file, and again
recommend the JSON approach.

Set save file

fp_results_html = '/path/to/results_html.json'

Parse SERP (inplace) to extract URLs

se.parse_serp()

Scrape HTML from results URLs and save to file

se.scrape_results_html(fp_results_html)

6https://www.ssh.com/ssh/

If the search session was initialized with an SSH tunnel,
then all of these requests will be funneled through it.

DISCUSSION
In this paper we introduced WebSearcher, a python package
for geolocating, archiving, and parsing web search data. Our
goal in releasing this package at an interdisciplinary con-
ference is to democratize the ability to conduct web search
audits. One realm in which these tools might be valuable is in
the upcoming US elections, and indeed, for the forthcoming
elections around the world where search results may be less
stable and more prone to manipulation [17].

Another critical realm in which these tools can be useful is
in building upon qualitative findings on the associations that
search engines assign to different groups [19] and the unique
queries that they formulate [24]. However, we assert that
successful endeavors in these research veins will depend on
interdisciplinary collaborations, mixed-methods approaches,
and engagement with the existing literature that already
exists for each vein.

Limitations
It is worth noting several limitations of our method. First, it
does not capture any specific individual’s web search experi-
ence. For each search query conducted, our method provides
a snapshot of the current relationship between the search en-
gine, the structure and content of the web, and all users who
searched the same query. Second, it currently only collects
the first page of search results. However, people frequently
do not browse past the first page of search results, and if
these data are required for a specific research project, our
package could easily be extended. Lastly, our method does
not capture content that loads dynamically, such as the con-
tent in drop down menus. One way to solve this issue is to
add a selenium-based approach and simulate a browser to
interact with and capture dynamically loading content.

Ethics
While not being able to capture a specific user’s experience is
a limitation in terms of ecological validity, it is an advantage
in terms of ethics. The data we collect removes the human
element of putting personally identifiable information (PII)
in search queries [14], and the PII that renders on a SERP
when someone logged in conducts a search. The primary
advantage that this serves is with respect to open science:
there are no privacy constraints in releasing data collected
using this method.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and others
for invaluable comments on this project.

https://www.ssh.com/ssh/

C+J ’20, March 20-21, 2020, Boston, Massachusetts Ronald E. Robertson and Christo Wilson

REFERENCES
[1] Andrea Ballatore. 2015. Google Chemtrails: A Methodology to Analyze

Topic Representation in Search Engine Results. First Monday 20, 7
(June 2015). https://doi.org/10.5210/fm.v20i7.5597

[2] Marsha Berzon and Clifford Wallace. 2019. hiQ Labs, Inc. v. LinkedIn
Corp.

[3] Munmun De Choudhury, Meredith Ringel Morris, and Ryen W. White.
2014. Seeking and Sharing Health Information Online: Comparing
Search Engines and Social Media. In Proceedings of the 32nd Annual
ACM Conference on Human Factors in Computing Systems - CHI ’14.
ACM Press, Toronto, Ontario, Canada, 1365–1376. https://doi.org/10.
1145/2556288.2557214

[4] Nicholas Diakopoulos, Daniel Trielli, Jennifer Stark, and Sean
Mussenden. 2018. I Vote For— How Search Informs Our Choice of
Candidate. In Digital Dominance: The Power of Google, Amazon, Face-
book, and Apple, Martin Moore and Damian Tambini (Eds.). Oxford
University Press, New York, NY.

[5] DuckDuckGo. 2018. Measuring the "Filter Bubble": How Google Is
Influencing What You Click. https://spreadprivacy.com/google-filter-
bubble-study/.

[6] The Economist. 2019. Google’s Algorithm – Seek and
You Shall Find. The Economist (June 2019), 81 (US).
https://twitter.com/J_CD_T/status/1137063752606605314
https://twitter.com/RERobertson/status/1137746023131074560.

[7] Robert Epstein and Ronald E. Robertson. 2015. The Search Engine
Manipulation Effect (SEME) and Its Possible Impact on the Outcomes
of Elections. Proceedings of the National Academy of Sciences 112, 33
(Aug. 2015), E4512–E4521. https://doi.org/10.1073/pnas.1419828112

[8] Robert Epstein, Ronald E. Robertson, David Lazer, and Christo Wilson.
2017. Suppressing the Search Engine Manipulation Effect (SEME).
Proceedings of the ACM on Human-Computer Interaction 1, CSCW (Dec.
2017), 1–22. https://doi.org/10.1145/3134677

[9] Susan Gerhart. 2004. Do Web Search Engines Suppress Controversy?
First Monday 9, 1 (Jan. 2004). https://doi.org/10.5210/fm.v9i1.1111

[10] Michael Golebiewski and danah boyd. 2019. Data Voids: Where Missing
Data Can Easily Be Exploited. Technical Report. Data & Society. 51
pages.

[11] Laura A. Granka. 2010. The Politics of Search: A Decade Retrospective.
The Information Society 26, 5 (Sept. 2010), 364–374. https://doi.org/10.
1080/01972243.2010.511560

[12] Lucas D. Introna and Helen Nissenbaum. 2000. Shaping the Web: Why
the Politics of Search Engines Matters. The Information Society 16, 3
(July 2000), 169–185. https://doi.org/10.1080/01972240050133634

[13] Chloe Kliman-Silver, Aniko Hannak, David Lazer, Christo Wilson,
and Alan Mislove. 2015. Location, Location, Location: The Impact of
Geolocation on Web Search Personalization. In Proceedings of the 2015
ACM Conference on Internet Measurement Conference - IMC ’15. ACM
Press, Tokyo, Japan, 121–127. https://doi.org/10.1145/2815675.2815714

[14] Declan McCullagh. 2006. AOL’s Disturbing Glimpse into Users’
Lives. https://www.cnet.com/news/aols-disturbing-glimpse-into-
users-lives/.

[15] Connor McMahon, Isaac Johnson, and Brent Hecht. 2017. The Sub-
stantial iInterdependence of Wikipedia and Google: A Case Study on
the Relationship between Peer Production Communities and Informa-
tion Technologies. In Proceedings of the Eleventh International AAAI
Conference on Web and Social Media (ICWSM 2018). AAAI, 10.

[16] Danaë Metaxa, Joon Sung Park, James A. Landay, and Jeff Hancock.
2019. Search Media and Elections: A Longitudinal Investigation of
Political Search Results. Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (Nov. 2019), 1–17. https://doi.org/10.1145/3359231

[17] P Takis Metaxas and Yada Pruksachatkun. 2017. Manipulation of
Search Engine Results during the 2016 US Congressional Elections. In
Proceedings of the ICIW 2017. 6.

[18] Eni Mustafaraj. 2018. Are Google’s Top Stories Politically Biased? It’s
Complicated. https://medium.com/@enimust/are-googles-top-stories-
politically-biased-it-s-complicated-e9c68e269ed9.

[19] Safiya Umoja Noble. 2018. Algorithms of Oppression: How Search En-
gines Reinforce Racism. New York University Press, New York.

[20] Ronald E. Robertson, Shan Jiang, Kenneth Joseph, Lisa Friedland, David
Lazer, and Christo Wilson. 2018. Auditing Partisan Audience Bias
within Google Search. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (Nov. 2018), 1–22. https://doi.org/10.1145/3274417

[21] Ronald E. Robertson, David Lazer, and Christo Wilson. 2018. Audit-
ing the Personalization and Composition of Politically-Related Search
Engine Results Pages. In Proceedings of the 2018 World Wide Web Con-
ference on World Wide Web - WWW ’18. ACM Press, Lyon, France,
955–965. https://doi.org/10.1145/3178876.3186143

[22] Piotr Sapiezynski, Wesley Zeng, Ronald E Robertson, Alan Mislove,
and ChristoWilson. 2019. Quantifying the Impact of User Attention on
Fair Group Representation in Ranked Lists. In Companion Proceedings
of The 2019WorldWideWeb Conference on - WWW ’19. ACM Press, San
Francisco, USA, 553–562. https://doi.org/10.1145/3308560.3317595

[23] Daniel Trielli and Nicholas Diakopoulos. 2019. Search as News Curator:
The Role of Google in Shaping Attention to News Information. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems - CHI ’19. ACM Press, Glasgow, Scotland Uk, 1–15. https:
//doi.org/10.1145/3290605.3300683

[24] Francesca Tripodi. 2018. Searching for Alternative Facts. Technical
Report. Data&Society. 64 pages.

[25] Nicholas Vincent, Issac Johnson, Patrick Sheehan, and Brent Hecht.
2019. Measuring the Importance of User-Generated Content to Search
Engines. In Proceedings of the International AAAI Conference on Web
and Social Media, Vol. 13.

https://doi.org/10.5210/fm.v20i7.5597
https://doi.org/10.1145/2556288.2557214
https://doi.org/10.1145/2556288.2557214
https://doi.org/10.1073/pnas.1419828112
https://doi.org/10.1145/3134677
https://doi.org/10.5210/fm.v9i1.1111
https://doi.org/10.1080/01972243.2010.511560
https://doi.org/10.1080/01972243.2010.511560
https://doi.org/10.1080/01972240050133634
https://doi.org/10.1145/2815675.2815714
https://doi.org/10.1145/3359231
https://doi.org/10.1145/3274417
https://doi.org/10.1145/3178876.3186143
https://doi.org/10.1145/3308560.3317595
https://doi.org/10.1145/3290605.3300683
https://doi.org/10.1145/3290605.3300683

	Abstract
	1 Getting Started
	2 Conduct a Search
	3 Save a Search
	4 Parse a Search
	5 Conduct a localized search
	6 Conduct a remote search
	7 Crawling Search Result URLs
	Acknowledgments
	References

